Skip to main content
Log in

Experimental study of mechanical properties and fracture modes in different regions of the nickel-based welding joint based on small punch test

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The mechanical properties and fracture mechanism in different micro-regions of the nickel-based welding joint with the ENiCrMo-3 as the electrode and 15CrMoR as the base material are studied based on small punch test (SPT) and microscopic observation. The load–displacement curves in different regions containing base metal zone (BMZ), heat-affected zone (HAZ) and welding metal zone (WMZ) are obtained by SPT, and the distribution laws of yield load Py, the maximum load Pm, the displacement corresponding to the maximum load um and the fracture energy ESP are analysed. The yield load Py and the maximum load Pm in BMZ and HAZ are similar, and both are lower than those in WMZ, while the displacement corresponding to the maximum load and the fracture energy in BMZ and HAZ are similar and larger than those in WMZ. Therefore, the WMZ is with better strength, but weaker ductility than BMZ and HAZ. The fractured SPT specimens and the metallographic observations reveal that the failure mode in BMZ is the significant circular necking forming a “C” type ductile fracture. But in WMZ, the secondary cracks combined with the primary circular crack form a “Y” type fracture morphology with the mixed brittle and ductile fracture mode. In this study, the characterizations of mechanical properties and fracture modes in different micro-regions of nickel-based welding joint are achieved by SPT, which is meaningful to comprehensively understand the fracture behaviour of the nickel-based welding joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The date underlying this article will be shared on reasonable request to the corresponding author.

Abbreviations

P y :

Yield load (N)

P m :

Maximum load (N)

f A :

The load corresponding to point A (N)

f B :

The load corresponding to point B (N)

u m :

The displacement corresponding to the maximum load (mm)

u A :

The displacement value corresponding to point A (mm)

u B :

The displacement value corresponding to the specimen thickness (mm)

E SP :

Fracture energy (MJ)

E SPm :

The fracture energy corresponding to the maximum load of the load–displacement curve (MJ)

E SPw :

The fracture energy corresponding to the entire load–displacement curve (MJ)

P y_Mao :

Yield load derived by the method of Mao (N)

P y_CEN :

Yield load derived by the method in CEN (N)

P y_inf :

Force corresponding to the first inflexion point in SPT curves (N)

P y_t/10 :

Yield load obtained by translating the tangent line of the elastic phase curve to the right by 1/10 of the thickness of the specimen t (N)

σ y :

Yield stress (MPa)

σ y_Mao :

Yield stress in the correlation equation proposed by Mao (MPa)

σ y_Cue :

Yield stress in the correlation equation proposed by Cue (MPa)

t :

Small punch test specimen thickness (mm)

α :

Empirical fitting parameter

α 1 :

Slope

α 2 :

Intercept

D :

Lower die punching diameter (mm)

d :

Upper die punching diameter (mm)

t h1 :

The minimum thickness of the specimen in BMZ (mm)

t h2 :

The minimum thickness of the specimen in WMZ (mm)

SPT:

Small punch test

SMAW:

Shielded metal arc welding

PWHT:

Post-weld heat treatment

BMZ:

Base metal zone

HAZ:

Heat-affected zone

WMZ:

Welding metal zone

TIG:

Tungsten inert gas

A-TIG:

Activating flux TIG welding

DIC:

Digital image correlation

References

  1. Shimazu H, Konosu S, Tanaka Y, Yuga M, Yamamoto H, Ohtsuka N (2013) Combined effect of temper and hydrogen embrittlement on threshold for hydrogen-induced fracture in cr-mo steels. J Press Vessel Technol 135(2):021406. https://doi.org/10.1115/1.4023423

  2. Yu X (2014) Correlation of ferrite formation to creep properties of Cr-Mo steel welds. Weld World 59(2):251–259. https://doi.org/10.1007/s40194-014-0200-5

    Article  CAS  Google Scholar 

  3. Albert SK, Ramasubbu V, Sundar Raj SI, Bhaduri AA (2013) Hydrogen-Assisted Cracking Susceptibility of modified 9Cr-1 Mo steel and its weld metal. Weld World 55(7–8):66–74. https://doi.org/10.1007/bf03321309

    Article  Google Scholar 

  4. Nagaraju S, Vasantharaja P, Brahadees G, Vasudevan M, Mahadevan S (2017) Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints. J Mater Eng Perform 26(12):5938–5953. https://doi.org/10.1007/s11665-017-3077-9

    Article  CAS  Google Scholar 

  5. Storesund J, Sandström R (1995) Influence of post weld heat treatment on impact toughness properties of 1Cr0.5Mo and 2.25Cr1Mo steels. Steel Res 66(3):117–123. https://doi.org/10.1002/srin.199501099

    Article  CAS  Google Scholar 

  6. Sireesha M, Albert SK, Sundaresan S (2001) Microstructure and Mechanical Properties of Weld Fusion Zones in Modified 9Cr-1Mo Steel. J Mater Eng Perform 10(3):320–330. https://doi.org/10.1361/105994901770345033

    Article  CAS  Google Scholar 

  7. Bhaduri AK, Seetharaman V, Venkadesan S (1989) Effect of ageing on the interfacial microstructure and mechanical properties of a alloy 800/2.25 Cr-1 Mo steel joint. Int J Mater Res 80(9):630–634. https://doi.org/10.1515/ijmr-1989-800905

  8. Laha K, Chandravathi KS, Parameswaran P, Goyal S, Mathew MD (2011) A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels. Metall and Mater Trans A 43(4):1174–1186. https://doi.org/10.1007/s11661-011-0957-8

    Article  CAS  Google Scholar 

  9. Shariatpanahi AM, Farhangi H (2009) Microstructure and Mechanical Properties of Dissimilar Ferritic and Austenitic Steel Joints with an Intermediate Inconel-182 Buttering Layer. Adv Mater Res 83–86:449–456. https://doi.org/10.4028/www.scientific.net/AMR.83-86.449

    Article  CAS  Google Scholar 

  10. Yang S, Xue L, Lu W, Ling X (2020) Experimental study on the mechanical strength and dynamic strain aging of Inconel 617 using small punch test. J Alloy Compd 815:152447. https://doi.org/10.1016/j.jallcom.2019.152447.

  11. Mandziej ST, Vyrostkova A, Solar M (2013) Evolution Of Cr-Mo-Vweld Metal Microstructure during creep testing Part 2: P24 material. Weld World 55(5–6):52–69. https://doi.org/10.1007/bf03321295

    Article  Google Scholar 

  12. Lyu DY, You HS, Jung HD, Lim JK, Chung SH (1991) Fracture Strength Evaluation of Welded Joint in Steels by Using Small Punch Test. Key Eng Mater 51–52:435–440. https://doi.org/10.4028/www.scientific.net/KEM.51-52.435

    Article  Google Scholar 

  13. Nafari M, Salemi Golezani A (2018) Heat affected zone creep characterization of INCOLOY 800H by means of small punch test. Eng Fail Anal 94:407–411. https://doi.org/10.1016/j.engfailanal.2018.08.020

    Article  CAS  Google Scholar 

  14. Rodríguez C, Cabezas JG, Cárdenas E, Belzunce FJ, Journal CBJW (2009) Mechanical properties characterization of heat-affected zone using the small punch test. Weld J 88(9):188–192

    Google Scholar 

  15. Gülçimen B, Durmuş A, Ülkü S, Hurst RC, Turba K, Hähner P (2013) Mechanical characterisation of a P91 weldment by means of small punch fracture testing. Int J Press Vessels Pip 105–106:28–35. https://doi.org/10.1016/j.ijpvp.2013.02.005

    Article  CAS  Google Scholar 

  16. Lee D-H, Kim H-S (2008) A Study on the Correlation between Advanced Small Punch Test and Charpy V-notch Test on X20CrMoV121 and 2.25Cr1Mo steels Weldment. J Korean Weld Join Soci 26(3):37–44. https://doi.org/10.5781/kwjs.2008.26.3.037

    Article  Google Scholar 

  17. CWA 15627 (2007) Small punch test method for metallic material. European Committee for Standardization, Brussels, Belgium

  18. GB/T 29459 (2012) Test method for small punch testing of metallic materials for in-service pressurized equipment. China National Standardization Management Committee, Beijing, China

  19. ASTM E3205 (2020) Standard test method for small punch testing of metallic materials. ASTM International, Pennsylvania, United States

  20. BS EN 10371 (2021) Metallic materials- Small punch test method. British Standards Institution, London, UK

  21. GB/T 19867.1 (2005) Welding procedure specification for arc welding. China National Standardization Management Committee, Beijing, China

  22. NB/T 47013-2015 (2015) Non-destructive testing of pressure equipments. China National Standardization Management Committee, Beijing, China

  23. Ha JS, Fleury E (1998) Small punch tests to estimate the mechanical properties of steels for steam power plant: II. Fracture toughness. Int J Press Vessel Pip 75(9):707–713. https://doi.org/10.1016/s0308-0161(98)00075-1

    Article  CAS  Google Scholar 

  24. Finarelli D, Carsughi F, Jung P (2008) The small ball punch test at FZJ. J Nucl Mater 377(1):65–71. https://doi.org/10.1016/j.jnucmat.2008.02.053

    Article  CAS  Google Scholar 

  25. Mao X, Saito M, Takahashi H (1991) Small punch test to predict ductile fracture toughness JIC and brittle fracture toughness KIC. Scr Metall Mater 25(11):2481–2485. https://doi.org/10.1016/0956-716x(91)90053-4

    Article  CAS  Google Scholar 

  26. Mao X, Takahashi H, Kodaira T (1992) Use of Subsized Specimen for Evaluating the Strength and Fracture Toughness of Irradiated 2 1/4 Cr-1 M0 Steel. J Eng Mater Technol 114(2):168–171. https://doi.org/10.1115/1.2904157

    Article  CAS  Google Scholar 

  27. Mao X, Takahashi H (1987) Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J Nucl Mater 150(1):42–52. https://doi.org/10.1016/0022-3115(87)90092-4

    Article  CAS  Google Scholar 

  28. Mao X, Kameda J (1991) Small-punch technique for measurement of material degradation of irradiated ferritic alloys. J Mater Sci 26(9):2436–2440. https://doi.org/10.1007/bf01130192

    Article  CAS  Google Scholar 

  29. Rodríguez C, Fernández M, Cabezas JG, García TE, Belzunce FJ (2016) The use of the small punch test to solve practical engineering problems. Theoret Appl Fract Mech 86:109–116. https://doi.org/10.1016/j.tafmec.2016.08.021

    Article  Google Scholar 

  30. García TE, Rodríguez C, Belzunce FJ, Suárez C (2014) Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloy Compd 582:708–717. https://doi.org/10.1016/j.jallcom.2013.08.009

    Article  CAS  Google Scholar 

  31. Leclerc N, Khosravani A, Hashemi S, Miracle DB, Kalidindi SR (2021) Correlation of measured load-displacement curves in small punch tests with tensile stress-strain curves. Acta Mater 204:116501. https://doi.org/10.1016/j.actamat.2020.116501

  32. Cuesta II, Alegre JM (2012) Hardening evaluation of stamped aluminium alloy components using the Small Punch Test. Eng Fail Anal 26:240–246. https://doi.org/10.1016/j.engfailanal.2012.06.004

    Article  CAS  Google Scholar 

  33. Álvarez G, Zafra A, Rodríguez C, Belzunce FJ, Cuesta II (2020) SPT analysis of hydrogen embrittlement in CrMoV welds. Theoret Appl Fract Mech 110:102813. https://doi.org/10.1016/j.tafmec.2020.102813

  34. Contreras MA, RodrÍGuez C, Belzunce FJ, BetegÓN C (2008) Use of the small punch test to determine the ductile-to-brittle transition temperature of structural steels. Fatigue Fract Eng Mater Struct 31(9):727–737. https://doi.org/10.1111/j.1460-2695.2008.01259.x

    Article  Google Scholar 

  35. Dorazil O, Matocha K, Zhu J, Chen Y (2016) The effect of long term exposition at 540 °C on the empirical correlations for determination of mechanical properties of low alloy CrMoV steel from the results of Small Punch tests. Perspect Sci 7:156–160. https://doi.org/10.1016/j.pisc.2015.11.025

    Article  Google Scholar 

  36. Kato T, Komazaki S-I, Kohno Y, Tanigawa H, Kohyama A (2009) High-temperature strength analysis of welded joint of RAFs by small punch test. J Nucl Mater 386–388:520–524. https://doi.org/10.1016/j.jnucmat.2008.12.153

    Article  CAS  Google Scholar 

  37. Singh SP, Bhattacharya S, Sehgal DK (2014) Evaluation of e mechanical strength of Cr–Mo grade steel through small punch test technique. Eng Fail Anal 39:207–220. https://doi.org/10.1016/j.engfailanal.2014.01.014

    Article  CAS  Google Scholar 

  38. Ruan Y, Spätig P, Victoria M (2002) Assessment of mechanical properties of the martensitic steel EUROFER97 by means of punch tests. J Nucl Mater 307–311:236–239. https://doi.org/10.1016/s0022-3115(02)01194-7

    Article  Google Scholar 

  39. Xie X-F, Li J, Jiang W, Dong Z, Tu S-T, Zhai X, Zhao X (2020) Nonhomogeneous microstructure formation and its role on tensile and fatigue performance of duplex stainless steel 2205 multi-pass weld joints. Mater Sci Eng: A 786:139426. https://doi.org/10.1016/j.msea.2020.139426

  40. Sriba A, Bouquerel J, Vogt J-B (2022) DIC-aided analysis of the fatigue behaviour of a welded 316L stainless steel. Weld World 66(9):1915–1927. https://doi.org/10.1007/s40194-022-01355-9

    Article  Google Scholar 

  41. Mandziej ST, Vyrostkova A, Chovet C (2013) Microstructure and Creep Rupture of P92-grade weld metal. Weld World 55(5–6):37–51. https://doi.org/10.1007/bf03321294

    Article  Google Scholar 

  42. Hughes DA, Hansen N (1997) High angle boundaries formed by grain subdivision mechanisms. Acta Mater 45(9):3871–3886. https://doi.org/10.1016/s1359-6454(97)00027-x

    Article  CAS  Google Scholar 

  43. Schönmaier H, Grimm F, Krein R, Kirchheimer K, Schnitzer R (2019) Microstructural evolution of 2.25Cr-1Mo-0.25V submerged-arc weld metal. Weld World 64(2):379–393. https://doi.org/10.1007/s40194-019-00839-5

    Article  CAS  Google Scholar 

  44. Zhang Y-C, Jiang W, Tu S-T, Zhang X-C (2022) Fracture toughness assessment of the X80 steel by nanoindentation technique and a modified constitutive model. Theoret Appl Fract Mech 117:103195. https://doi.org/10.1016/j.tafmec.2021.103195

Download references

Funding

This work received supports from the National Natural Science Foundation of China, grant number 52075050; Natural Science Foundation of Jiangsu Province, grant number BK20201448; and Postgraduate Research & Practice Innovation Program of Jiangsu Province, grant number, SJCX22_1427.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Peng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission X - Structural Performances of Welded Joints - Fracture Avoidance

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Peng, J., Jiang, L. et al. Experimental study of mechanical properties and fracture modes in different regions of the nickel-based welding joint based on small punch test. Weld World 67, 637–650 (2023). https://doi.org/10.1007/s40194-022-01451-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01451-w

Keywords

Navigation