Skip to main content
Log in

Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. W.B. Jones, C.R. Hills, and D.H. Polonis, Microstructural Evolution of Modified 9Cr-1Mo Steel, Metall. Trans. A, 1991, 22A, p 1049-1058

    Article  Google Scholar 

  2. S. Spigraelli, E. Cerri, P. Bianchi, and E. Evangelista, Interpretation of Creep Behaviour of a 9Cr-Mo-Nb-V-N (T91) Steel Using Threshold Stress Concept, Mater. Sci. Technol., 1999, 15, p 1433-1440

    Article  Google Scholar 

  3. R.L. Klueh and D.R. Harries, High Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM International, West Conshohocken, 2001

    Book  Google Scholar 

  4. R.W. Vanstone, Advanced (700C) PF Power Plant, in Proceedings of the Third Conference on Advances in Materials Technology for Fossil Power Plants, University of Wales Swansea, 2001, pp. 7-14

  5. S.L. Mannan, S.C. Chetal, B. Raj, and S.B. Bhoje, Selection of Materials for Prototype Fast Breeder Reactor, Trans. Indian Inst. Met., 2003, 56(2), p 155-178

    Google Scholar 

  6. M. Vasudevan, Computational and Experimental Studies on Arc Welded Austenitic Stainless Steels. PhD Thesis, Indian Institute of Technology, Chennai, 2007

  7. M. Vasudevan, Effect of A-TIG Welding Process on the Weld Attributes of Type 304 LN and 316 LN Stainless Steels, J. Mater. Eng. Perform., 2017, 26(3), p 1325-1336

    Article  Google Scholar 

  8. M. Tanaka, T. Shimizu, H. Terasaki, M. Ushio, F. Koshi-ishi, and C.L. Yang, Effects of Activating Flux on Arc Phenomena in Gas Tungsten Arc Welding, Sci. Technol. Weld. Join., 2000, 5(6), p 397-402

    Article  Google Scholar 

  9. D.S. Howse and W. Lucas, Investigation Into Arc Constriction by Active Fluxes for Tungsten Inert Gas Welding, Sci. Technol. Weld. Join., 2000, 5(3), p 189-193

    Article  Google Scholar 

  10. H.Y. Huang, S.W. Shyu, K.H. Tseng, and C.P. Chou, Evaluation of TIG Flux Welding on the Characteristics of Stainless Steel, Sci. Technol. Weld. Join., 2005, 10(5), p 566-573

    Article  Google Scholar 

  11. M. Marya, Overview of Innovative Developments in Science and Technology of Welding, Int. J. Mech. Mater. Eng., 2006, 1(1), p 1-10

    Google Scholar 

  12. J.J. Lowke, M. Tanaka, and M. Ushio, Mechanisms Giving Increased Weld Depth Due to a Flux, J. Phys. D Appl. Phys., 2005, 38, p 3438-3445

    Article  Google Scholar 

  13. K.H. Tseng and C.Y. Hsu, Performance of Activated TIG Process in Austenitic Stainless Steel Welds, J. Mater. Process. Technol., 2011, 211, p 503-512

    Article  Google Scholar 

  14. T. Paskell, C. Lundin, and H. Castner, GTAW Flux Increases Weld Joint Penetration, Weld. J, 1997, 76(4), p 57-62

    Google Scholar 

  15. S. Leconte, P. Paillard, and J. Saindrenan, Effect of Fluxes Containing Oxides on Tungsten Inert Gas Welding Process, Sci. Technol. Weld. Join., 2006, 11(1), p 43-47

    Article  Google Scholar 

  16. P.J. Modenesi, E.R. Apolinario, and I.M. Pereira, TIG Welding with Single-Component Fluxes, J. Mater Process. Technol., 2009, 99(1-3), p 260-265

    Article  Google Scholar 

  17. R.S. Vidyarthy, D.K. Dwivedi, and M. Vasudevan, Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical behaviour of 409 Ferritic Stainless Steel, J. Mater. Eng. Perform., 2017, 26, p 1391-1403

    Article  Google Scholar 

  18. T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Paneerselvi, V. Maduriamuthu, and M.D. Mathew, Creep-Rupture Behavior of 9Cr-1.8W-0.5Mo-VNbP92 Ferritic Steel Weld Joint, Mater. Sci. Eng. A, 2014, 591, p 111-120

    Article  Google Scholar 

  19. V. Arunkumar, M. Vasudevan, V. Maduraimuthu, and V. Muthupondi, Effect of Activated Flux on the Microstructure and Mechanical Properties of Plain 9Cr-1Mo Steel Weld Joint, Mater. Manuf. Process., 2012, 27(11), p 1-7

    Article  Google Scholar 

  20. K.C. Ganesh, M. Vasudevan, K.R. Balasubramanian, N. Chandrasekhar, and P. Vasantharaja, Modeling, Prediction and Validation of Thermal Cycles, Residual Stresses and Distortion in type 316 LN Stainless Steel Weld Joint, Proc. Eng., 2014, 86, p 767-774

    Article  Google Scholar 

  21. K.C. Ganesh, K.R. Balasubramanian, and M. Vasudevan, Effect of Multi Pass TIG and Activated TIG Welding Process on the Thermo-mechanical Behaviour of 316LN Stainless Steel Weld Joints, Metall. Mater. Trans. B, 2016, 47(2), p 1347-1362

    Article  Google Scholar 

  22. S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan, Effect of Prolonged Exposures of 9Cr-1Mo-0.07C Steel to Elevated Temperatures, Mater. Trans. JIM, 1993, 34(10), p 901-906

    Article  Google Scholar 

  23. W.F. Limaa, G. Rigueiraa, H.C. Furtadoa, M.B. Lisboaa, and L.H. de Almeidab, Microstructure Evolution and Creep Properties of 2.25Cr-1Mo Ferrite-Pearlite and Ferrite-bainite Steels After Exposure to Elevated Temperatures. Mater. Res. (2017). https://doi.org/10.1590/1980-5373-MR-2016-0596.

  24. M.-L. Zhu, D.-Q. Wang, and F.-Z. Xuan, Effect of Long-Term Aging on Microstructure and Local Behavior in the Heat-Affected Zone of a Ni-Cr-Mo-V Steel Welded Joint, Mater. Charact., 2014, 87, p 45-61

    Article  Google Scholar 

  25. Z. Zhang, A.W. Marshall, and J.C.M. Farrar, Present Developments in Welding Consumables for P(T)91 Creep-Resisting Steels, in Conference Proceedings, International Conference on Integrity of High-Temperature Welds, Nottingham, UK, 3-4 November 1998, The Institute of Mechanical Engineers, London, pp. 77-91

  26. D. Deng, Y. Zhou, T. Bi, and X. Liu, Experimental and Numerical Investigations of Welding Distortion Induced by C02 Gas Arc Welding in Thin-Plate Bead-on Joints, Mater. Des., 2013, 52, p 720-729

    Article  Google Scholar 

  27. H. Long, D. Grey, A. Carlier, and P.G. Marpoulos, Prediction of Welding Distortion in Butt Joint of Thin Plates, Mater. Des., 2009, 30(10), p 4126-4135

    Article  Google Scholar 

  28. M. Seyyedian, M. Haghpanahi, and M. Sedighil, Investigation of the Effect of Clamping on Residual Stresses and Distortions in Butt-Welded Plates, Trans. B Mech. Eng., 2010, 17(5), p 387-394

    Google Scholar 

  29. A.K. Vasudevan, K. Sadananda, and G. Glinka, Critical Parameters for Fatigue Damage, Int. J. Fatigue, 2001, 23, p 39-53

    Article  Google Scholar 

  30. I.C. Noyan and J.B. Cohen, Residual Stress Measurement by Diffraction and Interpretation, Springer, New York, 1987

    Google Scholar 

  31. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, New Jersey, 2001

    Google Scholar 

  32. Jonas Hensel, Thomas Nitschke-Pagel, and Klaus Dilger, On the Effects of Austenite Phase Transformation on Welding Residual Stresses in Non-load Carrying Longitudinal Welds, Weld. World, 2015, 59(2), p 179-190

    Article  Google Scholar 

  33. A. Kundu, P.J. Bouchard, S. Kumar, K.A. Venkata, J.A. Francis, A. Paradowska, G.K. Dey, and C.E. Truman, Residual Stresses in P91 Steel Electron Beam Welds, Sci. Technol. Weld. Join., 2013, 18(1), p 70-75

    Article  Google Scholar 

  34. V. Maduraimuthu, M. Vasudevan, and P. Parameswaran, Studies on the Improvement of Toughness in Modified 9Cr-1Mo Steel Weld Joint, Trans. Indian Inst. Met., 2015, 68(2), p 181-189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vasudevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraju, S., Vasantharaja, P., Brahadees, G. et al. Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints. J. of Materi Eng and Perform 26, 5938–5953 (2017). https://doi.org/10.1007/s11665-017-3077-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3077-9

Keywords

Navigation