Skip to main content
Log in

Correlation of ferrite formation to creep properties of Cr-Mo steel welds

Henry Granjon prize 2013 winner category B: materials behaviour and weldability

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

A factor of four decreases from 16.0 × 10−4 to 4.1 × 10−4 %/h in steady state creep rate was observed in the fine-grained heat-affected zone (FGHAZ) of a Cr-Mo steel weld, by reducing the pre-weld tempering temperature from 760 to 650 °C. The current study used electron backscatter diffraction and synchrotron x-ray diffraction techniques to characterize the microstructure in the FGHAZ of the two tempering temperature conditions. The results showed carbide-free ferrite that formed in the FGHAZ of weldments that were pre-weld tempered at 760 °C, contributed to void formation resulting in lower creep strength. It is proposed that the formation of ferrite in the FGHAZ is due to the incomplete dissolution of Cr23C6 carbide at heating process during welding, which results in Cr enrichment adjacent to the undissolved Cr23C6 carbide. Dictra simulation confirmed ferrite formation at the carbide/austenite boundaries during Cr23C6 carbide dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bhadeshia HKDH (2001) ISIJ Int 41:626

    Article  Google Scholar 

  2. Henry JF (2005) Combined Cycle J 8

  3. I.A. Shibli, K. Coleman, www.ommi.co.uk/etd/ETD-EPRI-%20P91%20Failures.pdf

  4. Berte FJ (2007) Combined Cycle J 52

  5. Francis JA, Mazur W, Bhadeshia HKDH (2006) Mater Sci Technol 22:1387

    Article  Google Scholar 

  6. Abe F, Tabuchi M (2004) Mater Sci Technol 9:22

    Google Scholar 

  7. Hirata H, Ogawa K (2005) Weld Int 19:37

    Article  Google Scholar 

  8. Hirata H, Ogawa K (2005) Weld Int 19:118

    Article  Google Scholar 

  9. Albert SK, Matsui M, Watanabe T, Hongo H, Kubo K, Tabuchi M (2003) Int J Press Vessel Pip 80:405

    Article  Google Scholar 

  10. Li D, Shinozaki K, Kuroki H (2003) Mater Sci Technol 19:1253

    Article  Google Scholar 

  11. Otoguro Y, Matsubara M, Itoh I, Nakazawa T (2000) Nucl Eng Des 196:51

    Article  Google Scholar 

  12. Yu X, Babu SS, Terasaki H, Komizo Y, Yamamoto Y, Santella ML (2013) Acta Mater 61:2194

    Article  Google Scholar 

  13. Yu X, Santella ML, Yamamoto Y, Terasaki H, Komizo Y, Babu SS (2014) In situ phase transformation study in fine grained heat affected zone of grade 91 steels. In in situ Studies with photons, neutrons and electrons scattering II. Springer International Publishing, Switzerland, pp 29–49

    Book  Google Scholar 

  14. Yu X, Babu SS, Terasaki H, Komizo Y, Yamamoto Y, Santella ML (2013) Correlation of precipitate stability to increased creep resistance of Cr–Mo steel welds. Acta Mater 61(6):2194–2206

    Article  Google Scholar 

  15. Letofsky E, Cerjak H (2004) Metallography of 9Cr steel power plant weld microstructures. Sci Technol Weld Join 9(1):31–36

    Article  Google Scholar 

  16. Li D, Shinozaki K, Kuroki H (2003) Stress–strain analysis of creep deterioration in heat affected weld zone in high Cr ferritic heat resistant steel. Mater Sci Technol 19(9):1253–1260

    Article  Google Scholar 

  17. Kimmins ST, Smith DJ (1998) On the relaxation of interface stresses during creep of ferritic steel weldments. J Strain Analysis Eng Des 33(3):195–206

    Article  Google Scholar 

  18. Elmer JW, Wong J, Ressler T (2000) Scripta Mater 43:751

    Article  Google Scholar 

  19. Babu SS, Elmer JW, Vitek JM, David JM (2002) Acta Mater 50:4763

    Article  Google Scholar 

  20. Wong J, Ressler JW, Elmer J (2003) Synchrotron Radiat 10:154

    Article  Google Scholar 

  21. Babu SS, Specht ED, David SA, Karapetrova E, Zschack P, Peet M, Bhadeshia HKDH (2005) Metall Mater Trans A 36A:3281

    Article  Google Scholar 

  22. Stone HJ, Peet MJ, Bhadeshia HKDH, Withers PJ, Babu SS, Specht ED (2009) Proc Roy Soc A 464:1009

  23. Offerman SE, van Dijk NH, Sietsma J, Grigull S, Lauridsen EM, Margulies L, Poulsen HF, Rekveldt MT, vander Zwaag S (2002) Science 298:1003

    Article  Google Scholar 

  24. Terasaki H, Komizo Y (2011) Scripta Mater 64:29

    Article  Google Scholar 

  25. Rozenak P, Eliezer D (1986) J Mater Sci 21:3065

    Article  Google Scholar 

  26. Lai JKL, Galbraith IF (1980) J Mater Sci 15:1297

    Article  Google Scholar 

  27. Terao N, Sasmal B (1980) Metallography 13:117

    Article  Google Scholar 

  28. Parish C, Watkins T, Rios O, Mackiewicz-Ludtka G, Ludtka G, Cavin O (2011) Microsc Microanal 17:410

    Article  Google Scholar 

  29. Beneteaua A, Weisbeckera P, Geandierb G, Aeby-Gautiera E, Appolaire B (2005) Mater Sci Eng A 393:63

    Article  Google Scholar 

  30. Yonemura M, Osuki T, Hirata H, Ogawa K (2008) Metall Mater Trans A 39A:113

    Article  Google Scholar 

  31. Zhang XF (2012) Scripta Mater. doi:10.1016/j.scriptamat.2012.04.019

    Google Scholar 

  32. Stevens RA, Lonsdale D (1985) J Mater Sci 20:3631

    Article  Google Scholar 

  33. Mitchell DRG, Ball CJ (2001) Mater Charact 47:17

    Article  Google Scholar 

  34. ASTM Specification A139-06 (2008) Section II, part A

  35. Broennimann C, Eikenberry EF, Henrichn B, Horisberger R, Huelsen G, Pohl E, Schmitt B, Schulze-Briese C, Suzuki M, Tomizaki T, Toyokawa H, Wagner A (2006) The PILATUS 1M detector. J Synchrotron Radiat 13:120–130

    Article  Google Scholar 

  36. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) High Press Res 14:235

    Article  Google Scholar 

  37. Hammersley AP (1997) ESRF Internal Report No. ESRF97HA02A. ESRF, Grenoble, Cedex, France

    Google Scholar 

  38. Yamamoto Y, Yu X, Babu SS (2014) Proceedings of the ASME Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries ASME (2014), S2-1 ETS 2014–1009

  39. Evans M (2008) J Mater Sci 43:6070

    Article  Google Scholar 

  40. Hasegawa Y, Muraki T, Ohgami M (2004) Metallurgical investigation of a type IV damage at the heat affected zone of weld for tungsten containing martensitic heat resistant steels’, in International Conference Experience with Creep-Strength Enhanced Ferritic Steels and New and Emerging Computational Methods, ASME, San Diego

  41. Masuyama F (2001) ISIJ Int 41:612–625

    Article  Google Scholar 

  42. Tsuchida Y, Tokuno K, Hashimoto K (1993) Nippon Steel Technical Report No 58:27–35

    Google Scholar 

Download references

Acknowledgments

This research was conducted as part of the Fossil Energy Advanced Research Materials Program, which is sponsored by the Crosscutting Research  Program, Office of Fossil Energy, U.S. Department of Energy. The author would like to thank Dr. Yukinori Yamamoto and Dr. Mike Santella from Oak Ridge National Lab (ORNL) for the mentoring and discussion. Dr. Terasaki and Dr. Komizo from Osaka University are thanked for their help and discussion on the synchrotron experiments. Mr. Thomas Muth from ORNL is thanked for technically reviewing the manuscript. The synchrotron radiation experiments were performed at the BL46XU of SPring-8 as the Priority Research Proposal (priority filed: industrial application) with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal no. 2011B1968).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Yu.

Additional information

The research work was supervised by Professor Sudarsanam Suresh Babu at The Ohio State University, Columbus, OH. This submission was sponsored by a contractor of the United States Government under contract DE-AC05-00OR22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, and worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for the United States Government purposes.

Doc. IIW-2512, recommended for publication by Commission IX “Behaviour of Metals Subjected to Welding.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X. Correlation of ferrite formation to creep properties of Cr-Mo steel welds. Weld World 59, 251–259 (2015). https://doi.org/10.1007/s40194-014-0200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-014-0200-5

Keywords

Navigation