Analysis of Novel Schiff Base-Fe Complexes Against Breast Cancer Cells’ Viability

Article Preview

Abstract:

Two potential novels Schiff base iron (Fe) complexes Fe-L2 and Fe-L3 (where L2= N, N'-bis (o-hydroxyacetophenone) ethylenediamine and L3= N, N'-bis (o-hydroxybenzaldehyde) phenylenediamine) were synthesized from interaction a hot methanolic solution of each ligand L2 or L3 (0.01mole) with the appropriate amount of Fe (NO3)3.9H2O metal salt (0.01mole). This study investigated the cytotoxicity induced by both complexes (0.1 to 100 µg/ml) in MCF-7 and MDA-MB 231 cell lines. After 24 hours of treatment, the cell viabilities of both MCF-7 and MDA-MB-231 cells were linearly proportional to the Fe-L2 concentrations. A higher concentration of Fe-L2 would cause higher cell killings. On the other hand, most of the Fe-L3 concentrations caused total cell deaths for both cell lines, except for the lowest concentration (0.1 µg/ml). Fe-L2 and Fe-L3 also caused lower cell viability of MDA-MB-231 cells compared to MCF-7 cells. Overall, the obtained Fe-L3 is more toxic than Fe-L2 in breast cancer cells. It is suggested that the Fe-L3 is an excellent agent against breast cancer cells; meanwhile, the Fe-L2 is biocompatible and a good support in medical applications, especially as a radiosensitizer in radiotherapy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-68

Citation:

Online since:

November 2023

Export:

Price:

* - Corresponding Author

[1] S.M. Mousavi, S.A. Hashemi, M. Zarei, S. Bahrani, A. Savardashtaki, H. Esmaeili et al., Data on Cytotoxic And Antibacterial Activity of Synthesized Fe3O4 Nanoparticles Using Malva sylvestris, Data Brief 28 (2020), p.1–7.

DOI: 10.1016/j.dib.2019.104929

Google Scholar

[2] S.M. Hirst, A.S. Karakoti, R.D. Tyler, N. Sriranganathan, S. Seal and C.M. Reilly, Anti-inflammatory Properties of Cerium Oxide Nanoparticles, Small 5 (2009), p.2848–2856.

DOI: 10.1002/smll.200901048

Google Scholar

[3] N.N.T. Sisin, S.Z. Abidin, M.A. Yunus, H.M. Zin, K.A. Razak and W.N. Rahman, Evaluation of Bismuth Oxide Nanoparticles as Radiosensitizer for Megavoltage Radiotherapy, International Journal on Advanced Science Engineering Information Technology 9 (2019), p.1434–1443.

DOI: 10.18517/ijaseit.9.4.7218

Google Scholar

[4] D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht and S.R. Corrie, Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date, Pharm Res 33 (2016), p.2373–2387.

DOI: 10.1007/s11095-016-1958-5

Google Scholar

[5] S. Bonvalot, C. le Pechoux, T. de Baere, G. Kantor, X. Buy, E. Stoeckle et al., First-in-human Study Testing a New Radioenhancer Using Nanoparticles (NBTXR3) Activated by Radiation Therapy in Patients with Locally Advanced Soft Tissue Sarcomas, Clinical Cancer Research 23 (2017), p.908–917.

DOI: 10.1158/1078-0432.ccr-16-1297

Google Scholar

[6] R.A. Rashid, K.A. Razak, M. Geso, R. Abdullah, N. Dollah and W.N. Rahman, Radiobiological Characterization of the Radiosensitization Effects by Gold Nanoparticles for Megavoltage Clinical Radiotherapy Beams, Bionanoscience 8 (2018), p.713–722.

DOI: 10.1007/s12668-018-0524-5

Google Scholar

[7] W.N. Rahman, S.N.M. Kadian, R. Ab Rashid, R. Abdullah, K. Abdul Razak, B.T.T. Pham et al., Radiosensitization Characteristic of Superparamagnetic Iron Oxide Nanoparticles in Electron Beam Radiotherapy and Brachytherapy, J Phys Conf Ser 1248 (2019), p.1–6.

DOI: 10.1088/1742-6596/1248/1/012068

Google Scholar

[8] N.N.T. Sisin, R.A. Rashid, R. Abdullah, K.A. Razak, M. Geso, H. Akasaka et al., GafchromicTM EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192 Ir Brachytherapy , Proton , Photon and Electron Radiotherapy, Radiation 2 (2022), p.130–148.

DOI: 10.3390/radiation2010010

Google Scholar

[9] R.A. Rashid, S.Z. Abidin, M.A.K. Anuar, T. Tominaga, H. Akasaka, R. Sasaki et al., Radiosensitization Effects and ROS Generation by High Z Metallic Nanoparticles on Human Colon Carcinoma Cell (HCT116) Irradiated Under 150 MeV Proton Beam, OpenNano 4 (2019), p.1–8.

DOI: 10.1016/j.onano.2018.100027

Google Scholar

[10] E.A. Elsayed, S.A. Moussa, H.A. El-Enshasy and M.A. Wadaan, Anticancer Potentials of Zinc Oxide Nanoparticles Against Liver and Breast Cancer Cell Lines, J Sci Ind Res (India) 79 (2020), p.56–59.

Google Scholar

[11] W.N. Rahman, R.A. Rashid, M. Muhammad, N. Dollah, K.A. Razak and M. Geso, Dose Enhancement Effects by Different Size of Gold Nanoparticles Under Irradiation of Megavoltage Photon Beam, Jurnal Sains Nuklear Malaysia 30 (2018), p.23–29.

Google Scholar

[12] A. Jamil, S.Z. Abidin, K.A. Razak, H. Zin, M.A. Yunus and W.N. Rahman, Radiosensitization Effects by Bismuth Oxide Nanorods of Different Sizes in Megavoltage External Beam Radiotherapy, Reports of Practical Oncology and Radiotherapy 26 (2021), p.773–784.

DOI: 10.5603/rpor.a2021.0094

Google Scholar

[13] R.M. Lazim, R.A. Rashid, B.T.T. Pham, B.S. Hawkett, M. Geso and W.N. Rahman, Radiation Dose Enhancement Effects of Superparamagnetic Iron Oxide nanoparticles to the T24 Bladder Cancer Cell Lines Irradiated with Megavoltage Photon Beam Radiotheray, Jurnal Sains Nuklear Malaysia 30 (2018), p.30–38.

Google Scholar

[14] P. Foroozandeh and A.A. Aziz, Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles, Nanoscale Res Lett 13 (2018), p.1–12.

DOI: 10.1186/s11671-018-2728-6

Google Scholar

[15] B.D. Chithrani, A.A. Ghazani and W.C.W. Chan, Determining the Size and Shape Dependence of Gold Nanoparticles Uptake Into Mammalian Cells, Nano Lett 6 (2006), p.662–668.

DOI: 10.1021/nl052396o

Google Scholar

[16] X. Cheng, X. Tian, A. Wu, J. Li, J. Tian, Y. Chong et al., Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner, ACS Appl Mater Interfaces 7 (2015), p.20568–20575.

DOI: 10.1021/acsami.5b04290

Google Scholar

[17] Q. Xia, J. Huang, Q. Feng, X. Chen, X. Liu, X. Li et al., Size- and Cell Type-Dependent Cellular Uptake, Cytotoxicity and In Vivo Distribution of Gold Nanoparticles., Int J Nanomedicine 14 (2019), p.6957–6970.

DOI: 10.2147/ijn.s214008

Google Scholar

[18] Y.J. Lee, E.Y. Ahn and Y. Park, Shape-dependent Cytotoxicity and Cellular Uptake of Gold Nanoparticles Synthesized using Green Tea Extract, Nanoscale Res Lett 14 (2019), p.1–14.

DOI: 10.1186/s11671-019-2967-1

Google Scholar

[19] X. Xie, J. Liao, X. Shao, Q. Li and Y. Lin, The Effect of Shape on Cellular Uptake of Gold Nanoparticles in the Forms of Stars, Rods, and Triangles, Sci Rep 7 (2017), p.1–9.

DOI: 10.1038/s41598-017-04229-z

Google Scholar

[20] M. Bhamidipati and L. Fabris, Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry, Bioconjug Chem 28 (2017), p.449–460.

DOI: 10.1021/acs.bioconjchem.6b00605

Google Scholar

[21] M.A. Khairil Anuar, N.N.T. Sisin, H. Akasaka, R. Sasaki, T. Tominaga, H. Miura et al., Effect of Nanoparticle Size on Radiosensitization Effect and ROS Generation in Human Colon Carcinoma Cells (HCT 116) After 150 MeV Proton Beam Irradiation, Journal of Nuclear and Related Technologies 18 (2021), p.17–25.

DOI: 10.1016/j.onano.2018.100027

Google Scholar

[22] Z.A. Zulkifli, K.A. Razak and W.N.W.A. Rahman, The Effect of Reaction Temperature on The Particle Size of Bismuth Oxide Nanoparticles Synthesized Via Hydrothermal Method, in 3rd International Concerence on the Science and Engineering of Materials (ICoSEM 2017) AIP Conference Proceedings 1958, 020007 (2018), p.1–5.

DOI: 10.1063/1.5034538

Google Scholar

[23] N.N.T. Sisin, M.A.K. Anuar, N. Dollah, K.A. Razak, M. Algethami, M. Geso et al., Influence of PEG-coated Bismuth Oxide Nanoparticles on ROS Generation by Electron Beam Radiotherapy, Polish Journal of Medical Physics and Engineering 28 (2022), p.69–76.

DOI: 10.2478/pjmpe-2022-0008

Google Scholar

[24] F. Du, J. Lou, R. Jiang, Z. Fang, X. Zhao, Y. Niu et al., Hyaluronic acid-functionalized Bismuth Oxide Nanoparticles for Computed Tomography Imaging-Guided Radiotherapy of Tumor, Int J Nanomedicine 12 (2017), p.5973–5992.

DOI: 10.2147/ijn.s130455

Google Scholar

[25] I. Gessner, A. Klimpel, M. Klußmann, I. Neundorf and S. Mathur, Interdependence of Charge and Secondary Structure on Cellular Uptake of Cell Penetrating Peptide Functionalized Silica Nanoparticles, Nanoscale Adv 2 (2020), p.453–462.

DOI: 10.1039/c9na00693a

Google Scholar

[26] S.Z. Abidin, Z.A. Zulkifli, K.A. Razak, H. Zin, M.A. Yunus and W.N. Rahman, PEG coated Bismuth Oxide Nanorods Induced Radiosensitization on MCF-7 Breast Cancer Cells under Irradiation Of Megavoltage Radiotherapy Beams, Mater Today Proc 16 (2019), p.1640–1645.

DOI: 10.1016/j.matpr.2019.06.029

Google Scholar

[27] X. Yang, D. Salado‐leza, E. Porcel, C.R.G. Vargas, F. Savina, D. Dragoe et al., A Facile One‐Pot Synthesis of Versatile Pegylated Platinum Nanoflowers and Their Application in Radiation Therapy, Int J Mol Sci 21 (2020), p.1–20.

DOI: 10.3390/ijms21051619

Google Scholar

[28] S.B. Lee, D. Kumar, Y. Li, I.-K. Lee, S.J. Cho, S.K. Kim et al., PEGylated Crushed Gold Shell-Radiolabeled Core Nanoballs for In Vivo Tumor Imaging with Dual Positron Emission Tomography and Cerenkov Luminescent Imaging, J Nanobiotechnology 16 (2018), p.1–12.

DOI: 10.1186/s12951-018-0366-x

Google Scholar

[29] W. Xue, Y. Liu, N. Zhang, Y. Yao, P. Ma, H. Wen et al., Effects of Core Size and PEG Coating Layer of Iron Oxide Nanoparticles on The Distribution and Metabolism in Mice, Int J Nanomedicine 13 (2018), p.5719–5731.

DOI: 10.2147/ijn.s165451

Google Scholar

[30] L. Chaabane, H. Chahdoura, W. Moslah, M. Snoussi, E. Beyou, M. Lahcini et al., Synthesis and Characterization of Ni (II), Cu (II), Fe (II) and Fe3O4 Nanoparticle Complexes with Tetraaza Macrocyclic Schiff Base Ligand for Antimicrobial Activity and Cytotoxic Activity Against Cancer and Normal Cells, Appl Organomet Chem c4860 (2019), p.1–19.

DOI: 10.1002/aoc.4860

Google Scholar

[31] R.R. Surve and S.T. Sankpal, Synthesis of New Sulphanilamide Based Schiff Base Nickel Complexes with Study of its Antibacterial Activity and Nanoparticle Synthesis, Rasayan Journal of Chemistry 13 (2020), p.282–290.

DOI: 10.31788/rjc.2020.1315532

Google Scholar

[32] B. Gupta, A. Kumari, S. Belwal, R. v. Singh and N. Fahmi, Synthesis, Characterization of Platinum(II) Complexes of Schiff Base Ligands and Evaluation of Cytotoxic Activity of Platinum Nanoparticles, Inorganic and Nano-Metal Chemistry 50 (2020), p.914–925.

DOI: 10.1080/24701556.2020.1728552

Google Scholar

[33] Q.T. Nguyen, P.N. Pham Thi and V.T. Nguyen, Synthesis, Characterization, and in Vitro Cytotoxicity of Unsymmetrical Tetradentate Schiff Base Cu(II) and Fe(III) Complexes, Bioinorg Chem Appl 2021 (2021), p.1–10.

DOI: 10.1155/2021/6696344

Google Scholar

[34] M. Mahmoudabadi, H. Keypour, M.H. Zebarjadian and L. Hosseinzadeh, Synthesis, Cytotoxic Activity, Competitive 7Li NMR Studies of Potentially N6O2 Macroacyclic Schiff Base Ligands and Corresponding Manganese (II), Zinc (II) and Cadmium (II) Complexes, Chemical Data Collections 23 (2019), p.1–12.

DOI: 10.1016/j.cdc.2019.100263

Google Scholar

[35] N.O. AlZamil, DFT Calculation, DNA-Binding, Antimicrobial, Cytotoxic and Molecular Docking Studies on New Complexes VO(II), Fe(III), Co(II), Ni(II) and Cu(II) of Pyridine Schiff Base Ligand, Mater Res Express 7 (2020), p.1–20.

DOI: 10.1088/2053-1591/ab95d6

Google Scholar

[36] A.A. Adeleke, S.J. Zamisa, M.S. Islam, K. Olofinsan, V.F. Salau, C. Mocktar et al., Quinoline Functionalized Schiff Base Silver (I) Complexes: Interactions with Biomolecules and In Vitro Cytotoxicity, Antioxidant and Antimicrobial Activities, Molecules 26 (2021), p.1–34.

DOI: 10.3390/molecules26051205

Google Scholar

[37] Globocan 2018. Information on https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf.

Google Scholar

[38] T. Hofmarcher, G. Brådvik, B. Jönsson, P. Lindgren, B. Jönsson and N. Wilking, Comparator Report on Cancer in Europe 2019 – Disease Burden, Costs and Access to Medicines, IHE Report/Lund, Sweden, 2019.

DOI: 10.1016/j.annonc.2020.08.2303

Google Scholar

[39] U.M. Rabie, A.S.A. Assran and M.H.M. Abou-El-Wafa, Unsymmetrical Schiff Bases Functionalize as Bibasic Tetradentate (ONNO) and Monobasic Tridentate (NNO) Ligands on Complexation with Some Transition Metal Ions, J Mol Struct 872 (2008), p.113–122.

DOI: 10.1016/j.molstruc.2007.02.023

Google Scholar

[40] S.Z. Abidin, K.A. Razak, H. Zin, M.A. Yunus, N.H.N. Wail, R.A. Rashid et al., Comparison of Clonogenic and Prestoblue Assay for Radiobiological Assessment of Radiosensitization Effects by Bismuth Oxide Nanorods, Mater Today Proc 16 (2019), p.1646–1653.

DOI: 10.1016/j.matpr.2019.06.030

Google Scholar

[41] D. Hernandez-Patlan, B. Solis-Cruz, A. Méndez-Albores, J.D. Latorre, X. Hernandez-Velasco, G. Tellez et al., Comparison of Prestoblue ® And Plating Method to Evaluate Antimicrobial Activity of Ascorbic Acid, Boric Acid And Curcumin in an In Vitro Gastrointestinal Model, J Appl Microbiol 124 (2018), p.423–430.

DOI: 10.1111/jam.13659

Google Scholar

[42] M. Xu, D.J. McCanna and J.G. Sivak, Use of the Viability Reagent Prestoblue In Comparison with Alamarblue and MTT To Assess the Viability of Human Corneal Epithelial Cells, J Pharmacol Toxicol Methods 71 (2015), p.1–7.

DOI: 10.1016/j.vascn.2014.11.003

Google Scholar

[43] M. Aminuddin, M. Shafiee, M. Ashraf, M. Asri, S. Sakinah and S. Alwi, Review on the In Vitro Cytotoxicity Assessment in Accordance to the International Organization for Standardization (ISO), Malaysian Journal of Medicine and Health Sciences 17 (2021), p.2636–9346.

Google Scholar

[44] N.N.T. Sisin, H. Abdullah and M.D. Suláin, Antiproliferative, Antioxidative and Compounds Identification from Methanolic Extract of Passiflora Foetida and Its Fractions, J Anal Pharm Res 6 (2017), p.1–10.

DOI: 10.15406/japlr.2017.05.00166

Google Scholar

[45] F. Akbarzadeh, K. Khoshgard, L. Hosseinzadeh, E. Arkan and D. Rezazadeh, Investigating the Cytotoxicity of Folate-Conjugated Bismuth Oxide Nanoparticles on KB and A549 Cell Lines, Adv Pharm Bull 8 (2018), p.1–9.

DOI: 10.15171/apb.2018.071

Google Scholar

[46] N.N.T. Sisin, K.A. Razak, S.Z. Abidin, N.F.C. Mat, R. Abdullah, R.A. Rashid et al., Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy, Int J Nanomedicine 14 (2019), p.9941–9954.

DOI: 10.2147/ijn.s228919

Google Scholar

[47] M.F. Alves, A.C.C. Paschoal, T.D.F. Klimeck, C. Kuligovski, B.H. Marcon, A.M. de Aguiar et al., Biological Synthesis of Low Cytotoxicity Silver Nanoparticles (AgNPs) by the Fungus Chaetomium thermophilum—Sustainable Nanotechnology, Journal of Fungi 8 (2022), p.1–15.

DOI: 10.3390/jof8060605

Google Scholar

[48] National Institutes of Health (NIH), Background Review Document: In Vitro Cytotoxicity Test Methods for Estimating Acute Oral Systemic Toxicity, Research Triangle Park, NC, 2006.

Google Scholar

[49] Y. Kinjo, K. Wada, M. Oe, D.X. Hou and M. Takahashi, Effects of p-hydroxybenzaldehyde and p-hydroxyacetophenone from Non-Centrifuged Cane Sugar, Kokuto, on Serum Corticosterone, and Liver Conditions in Chronically Stressed Mice Fed with A High-Fat Diet, Food Sci Technol Res 26 (2020), p.501–507.

DOI: 10.3136/fstr.26.501

Google Scholar

[50] D. Das, M.K. Raza and T.K. Goswami, Evaluation of Photochemotherapeutic Potential of a Few Oxo-Bridged Dimeric Fe(III) Compounds Having Salen-type Ligands, Polyhedron 186 (2020), p.1–10.

DOI: 10.1016/j.poly.2020.114614

Google Scholar

[51] L. Wan and P. O'Brien, Molecular mechanism of 17α-ethinylestradiol Cytotoxicity in Isolated Rat Hepatocytes, Can J Physiol Pharmacol 92 (2014), p.21–26.

DOI: 10.1139/cjpp-2013-0267

Google Scholar

[52] L. Boo, W.Y. Ho, N.M. Ali, S.K. Yeap, H. Ky, K.G. Chan et al., Phenotypic and microRNA Transcriptomic Profiling of the MDA-MB-231 spheroid- enriched CSCs with Comparison of MCF- 7 microRNA Profiling Dataset, PeerJ 5 (2017), p.1–27.

DOI: 10.7717/peerj.3551

Google Scholar

[53] K. Roy, Y.S. Patel, R.K. Kanwar, R. Rajkhowa, X. Wang and J.R. Kanwar, Biodegradable Eri Silk Nanoparticles as a Delivery Vehicle for Bovine Lactoferrin against MDA-MB-231 and MCF-7 Breast Cancer Cells, Int J Nanomedicine 11 (2015), p.25–44.

DOI: 10.2147/ijn.s91810

Google Scholar

[54] X. Yao, R. Xie, Y. Cao, J. Tang, Y. Men, H. Peng et al., Simvastatin Induced Ferroptosis or Triple-Negative Breast Cancer Therapy, J Nanobiotechnology 19 (2021), p.1–14.

DOI: 10.1186/s12951-021-01058-1

Google Scholar

[55] M. Fatemi, N. Mollania, M. Momeni-Moghaddam and F. Sadeghifar, Extracellular Biosynthesis of Magnetic Iron Oxide Nanoparticles by Bacillus Cereus Strain HMH1: Characterization and in Vitro Cytotoxicity Analysis on MCF-7 and 3T3 Cell Lines, J Biotechnol 270 (2018), p.1–11.

DOI: 10.1016/j.jbiotec.2018.01.021

Google Scholar

[56] N.N.T. Sisin, N.F.C. Mat, R. Abdullah and W.N. Rahman, Baicalein-rich Fraction as a Potential Radiosensitizer or Radioprotective for HDR Brachytherapy: A Preliminary Study, Journal of Nuclear and Related Technologies 18 (2020), p.9–16.

Google Scholar

[57] N.N.T. Sisin, K.A. Razak, S.Z. Abidin, N.F.C. Mat, R. Abdullah, R.A. Rashid et al., Synergetic Influence of Bismuth Oxide Nanoparticles, Cisplatin and Baicalein-Rich Fraction on Reactive Oxygen Species Generation and Radiosensitization Effects for Clinical Radiotherapy Beams, Int J Nanomedicine 2020 (2020), p.7805–7823.

DOI: 10.2147/ijn.s269214

Google Scholar

[58] M.J. Eblan and A.Z. Wang, Improving Chemoradiotherapy with Nanoparticle Therapeutics., Transl Cancer Res 2 (2013), p.320–329.

Google Scholar

[59] N. Somani, S. Goyal, R. Pasricha, N. Khuteta, P. Agarwal, A. Garg et al., Sequential Therapy (Triple Drug-Based Induction Chemotherapy Followed By Concurrent Chemoradiotherapy) in Locally Advanced Inoperable Head and Neck Cancer Patients - Single Institute Experience, Indian Journal of Medical and Paediatric Oncology 32 (2011), p.86–91.

DOI: 10.4103/0971-5851.89781

Google Scholar

[60] K. Takahashi, Y. Osaka, Y. Ota, T. Watanabe, K. Iwasaki, S. Tachibana et al., Phase II study of Docetaxel, Cisplatin, and 5-Fluorouracil Chemoradiotherapy for Unresectable Esophageal Cancer, Anticancer Res 40 (2020), p.2827–2832.

DOI: 10.21873/anticanres.14256

Google Scholar

[61] N.N.T. Sisin, H. Akasaka, R. Sasaki, T. Tominaga, H. Miura, M. Nishi et al., Effects of Bismuth Oxide Nanoparticles, Cisplatin and Baicalein-rich Fraction on ROS Generation in Proton Beam irradiated Human Colon Carcinoma Cells, Polish Journal of Medical Physics and Engineering 28 (2022), p.30–36.

DOI: 10.2478/pjmpe-2022-0004

Google Scholar

[62] N.N.T. Sisin, K.A. Razak, N.F.C. Mat, R. Abdullah, R.A. Rashid, N.H. Mohd Zainudin et al., The Effects of Bismuth Oxide Nanoparticles and Cisplatin on MCF-7 Breast Cancer Cells Irradiated with Ir-192 High Dose Rate brachytherapy, J Radiat Res Appl Sci 15 (2022), p.159–171.

DOI: 10.1016/j.jrras.2022.01.017

Google Scholar

[63] A. Okamoto, S. Masunaga and N. Tatarazako, Chronic toxicity of 50 Metals to Ceriodaphnia dubia, Journal of Applied Toxicology 41 (2021), p.375–386.

DOI: 10.1002/jat.4049

Google Scholar