Influence of Forced Running Loads on the Content of Na+/K+-ATPase Isoforms and Monovalent Cations in Skeletal Muscles of Mice with a Model of Type II Diabetes Mellitus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of forced running for 1 hour daily for 4 weeks on the content of Na+/K+-ATPase isoforms and monovalent cations in the skeletal muscles of mice with a model of type II diabetes mellitus (DM-II) was studied. To form a model of the disease, a high-fat diet was used, and physical activity in the form of forced running was carried out for 4 weeks. The content of Na+/K+-ATPase isoforms and Na+ and K+ ions in muscle tissue of m. gastrocnemius was determined by Western blotting and atomic absorption spectrophotomery, respectively. It has been shown that the formation of DM-II in mice is accompanied by changes in the content of Na+/K+-ATPase alpha 1 and 2 isoforms in muscle tissue. The effect of forced running loads on the content of Na+/K+-ATPase in muscle tissue is significant and primarily differs in age groups. One can also note a certain dependence of the influence of forced running loads on the content of this enzyme on the time of their use. In young animals, changes in the concentrations of monovalent sodium and potassium cations after forced running loads were less pronounced. In aged mice, against the background of forced loads, an increase in the content of sodium and decrease in the content of potassium in muscle tissue was observed. The detected changes in monovalent cations content in the muscle tissue of mice with diabetes mellitus II under the influence of forced running loads may play a role in the implementation of the metabolic effects of physical activity.

About the authors

A. N. Zakharova

National Research Tomsk State University

Email: kapil@yandex.ru
Russia, Tomsk

K. G. Milovanova

National Research Tomsk State University

Email: kapil@yandex.ru
Russia, Tomsk

A. A. Orlova

National Research Tomsk State University

Email: kapil@yandex.ru
Russia, Tomsk

E. Yu. Dyakova

National Research Tomsk State University

Email: kapil@yandex.ru
Russia, Tomsk

Yu. G. Kalinnikova

National Research Tomsk State University

Email: kapil@yandex.ru
Russia, Tomsk

O. V. Kollantay

National Research Tomsk State University

Email: kapil@yandex.ru
Russia, Tomsk

I. Yu. Shuvalov

National Research Tomsk State University

Email: kapil@yandex.ru
Russia, Tomsk

A. V. Chibalin

National Research Tomsk State University

Email: kapil@yandex.ru
Russia, Tomsk

L. V. Kapilevich

National Research Tomsk State University

Author for correspondence.
Email: kapil@yandex.ru
Russia, Tomsk

References

  1. Groop LC, Eriksson JG (1992) The etiology and pathogenesis of non-insulin-dependent diabetes. Ann Med 24(6): 483–489. https://doi.org/10.1002/dmr.5610090503
  2. Fujimaki S, Kuwabara T (2017) Diabetes-induced dysfunction of mitochondria and stem cells in skeletal muscle and the nervous system. Int J Mol Sci 18(10): 2147. https://doi.org/10.3390/ijms18102147
  3. Højlund K (2014) Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J 61(7): B4890.
  4. Nagy C, Einwallner E (2018) Study of In vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). J Vis Exp 7(131): 1–12. https://doi.org/10.3791/56672
  5. Huh JY (2018) The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 41(1): 14–29. https://doi.org/10.1007/s12272-017-0994-y
  6. Zakharova AN, Milovanova KG, Orlova, AA, Dyakova EY, Kalinnikova JG, Kollantay OV, Shuvalov IY, Chibalin AV, Kapilevich LV (2023) Effects of Treadmill Running at Different Light Cycles in Mice with Metabolic Disorders. Int J Mol Sci 24: 15132. https://doi.org/10.3390/ijms242015132
  7. Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(3): S215–S219. https://doi.org/10.2337/diabetes.53.suppl_3.s215
  8. Meneilly GS (2001) Pathophysiology of diabetes in the elderly. In: Diabetes in old age. John Wiley & Sons. 155–164. https://doi.org/10.1002/0470842326.ch2
  9. Brandt C, Pedersen BK (2010) The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 520258. https://doi.org/10.1155/2010/520258
  10. Hansen JS, Zhao X, Irmler M, Liu X, Hoene M, Scheler M, Li Y, Beckers J, Hrabĕ de Angelis M, Häring HU, Pedersen BK, Lehmann R, Xu G, Plomgaard P, Weigert C (2015) Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery. Diabetologia 58(8): 1845–1854. https://doi.org/10.1007/s00125-015-3584-x
  11. Karstoft K, Pedersen BK (2016) Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol 94: 146–150. https://doi.org/10.1038/icb.2015.101
  12. Kapilevich L, Zakharova A, Kabachkova A, Kironenko T, Milovanova K, Orlov S (2017) Different impact of physical activity on plasma myokines content in athletes and untrained volunteers. FEBS J 284(1): 370–373.
  13. Kapilevich LV, Zakharova AN, Kabachkova AV, Kironenko TA, Orlov SN (2017) Dynamic and static exercises differentially affect plasma cytokine content in elite endurance- and strength-trained athletes and untrained volunteers. Front Physiol 30(8): 35. https://doi.org/10.3389/fphys.2017.00035
  14. Jurkat-Rott K, Fauler M, Lehmann-Horn F (2006) Ion channels and ion transporters of the transverse tubular system of skeletal muscle. J Muscle Res Cell Motil 27: 275–290. https://doi.org/10.1007/s10974-006-9088-z
  15. Sejersted OM, Sjogaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80: 1411–1481. https://doi.org/10.1152/physrev.2000.80.4.1411
  16. McDonough AA, Thompson CB, Youn JH (2002) Skeletal muscle regulates extracellular potassium. Am J Physiol Ren Physiol 282: F967–F974. https://doi.org/10.1152/ajprenal.00360.2001
  17. McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl– -disturbances and Na-K pump inactivation: implications for fatigue. J Appl Phys 104: 288–295. https://doi.org/10.1152/japplphysiol.01037.2007
  18. Murphy KT, Nielsen OB, Clausen T (2008) Analysis of exerciseinduced Na+-K+ exchange in rat skeletal muscle. Exp Physiol 93: 1249–1262. https://doi.org/10.1113/expphysiol.2008.042457
  19. Cairns SP, Lindinger MI (2008) Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol 586: 4039–4054. https://doi.org/10.1113/jphysiol.2008.155424
  20. Orlov SN, Koltsova SV, Kapilevich LV, Gusakova SV, Dulin NO (2015) KCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension. Genes & Diseas 2: 186–196. https://doi.org/10.1016/j.gendis.2015.02.007
  21. Smolyaninova LV, Koltsova SV, Sidorenko SV, Orlov SN (2017) Augmented gene expression triggered by Na+,K+-ATPase inhibition: Role of -mediated and – independent excitation-transcription coupling. Cell Calcium 68: 5–13. https://doi.org/10.1016/j.ceca.2017.10.00210.1016/j.ceca.2017.10.002
  22. Sidorenko S, Klimanova E, Milovanova K, Lopina OD, Kapilevich LV, Chibalin AV, Orlov SN (2018) Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: Role of -mediated and -independent signaling and elevated [Na+]i/[K+]i ratio. Cell Calcium 76: 72–86. https://doi.org/10.1016/j.ceca.2018.09.00710.1016/j.ceca.2018.09.007
  23. Kapilevich LV, Kironenko TA, Zaharova AN (2015) Skeletal muscle as an endicrine organ: role of [Na+]i/[K+]i-mediated excitation-transcription coupling. Genes & Diseas 2: 328–336. https://doi.org/10.1016/j.gendis.2015.10.001
  24. Lauritzen HP, Brandauer J, Schjerling P (2013) Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo. Diabetes 62: 3081–3092. https://doi.org/10.2337/db12-1261
  25. Jannot MF, Dufayet De La Tour DT, Coste P (2002) Na/K ATPase activity in Diabetic Patient Metabolism. Diabetes mellitus 51(3): 284–291.
  26. Shamansurova ZM, Mukhamedova FA, Tsoi AG, Tashmanova AB, Alieva AV, Akhrarova NA (2009) Abnormal Na-K-ATPase activity in erythrocytes from patients with diabetes mellitus. Diabetes mellitus 12(2): 55–57. https://doi.org/10.14341/2072-0351-5399
  27. Chistyakova OV, Sukhov IB, Dobretsov MG, Kubasov IV (2020) Study of Na/K-ATPase activity in the myocardium of rats under experimental conditions of prediabetes and diabetes mellitus. J Evol Biochem Physiol 56(2): 166–168. https://doi.org/10.1134/S0022093020020118
  28. Kapilevich LV, Milovanova KG, Sidorenko SV, Fedorov DA, Kironenko TA, Zakharova AN, Dyakova EYu, Orlov SN (2020) Influence of dynamic and static loads on the content of sodium and potassium in mouse skeletal muscles. Bull Exp Biol Med 169(1): 4–7. https://doi.org/10.1007/s10517-020-04811-y
  29. Klimanova EA, Sidorenko SV, Tverskoi AM, Shiyan AA, Smolyaninova LV, Kapilevich LV, Gusakova SV, Maksimov GV, Lopina OD, Orlov SN (2019) Search for Intracellular Sensors Involved in the Functioning of Monovalent Cations as Secondary Messengers. Biochemistry (Moscow) 84(11): 1280–1295. https://doi.org/10.1134/S0006297919110063
  30. Shiyan AA, Sidorenko SV, Fedorov D, Klimanova EA, Smolyaninova LV, Kapilevich LV, Grygorczyk R, Orlov SN (2019) Elevation of intracellular Na+ contributes to expression of early response genes triggered by endothelial cell shrinkage. Cell Physiol Biochem 53(4): 638–647. https://doi.org/10.33594/000000162
  31. Smolyaninova LV, Shiyan AA, Kapilevich LV, Lopachev AV, Fedorova TN, Klementieva TS, Moskovtsev AA, Kubatiev AA, Orlov SN (2019) Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: Role of α3- and α1-Na+,K+-ATPase-mediated signaling. PLoS One 14(9): e0222767. https://doi.org/10.1371/journal.pone.0222767
  32. Kapilevich LV, Zakharova AN, Dyakova EYu, Kalinnikova JG, Chibalin AV (2019) Mice experimental model of diabetes mellitus type ii based on high fat diet. Bull Siber Med 18(3): 53–61. https://doi.org/10.20538/1682-0363-2019-3-53-61
  33. Zakharova AN, Kalinnikova Y, Negodenko ES, Orlova AA, Kapilevich LV (2020) Experimental simulation of cyclic training loads. Teor Prakt Fizich Kult 10: 26–27.
  34. Clausen T (2013) Quantification of Na, K pumps and their transport rate in skeletal muscle: Functional significance. J General Physiol 142(4): 327–345. https://doi.org/10.1085/jgp.201310980
  35. Raue U, Trappe TA, Estrem ST, Qian H-R, Helvering LM, Smith RC, Trappe S (2012) Transcriptomic signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol 112: 1625–1636. https://doi.org/10.1152/japplphysiol.00435.2011
  36. McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl– disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Phys 104: 288–295. https://doi.org/10.1152/japplphysiol.01037.2007
  37. Koltsova SV, Trushina Y, Haloui M, Akimova OA, Tremblay J, Hamet P, Orlov SN (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for [Ca2+]i-independent excitation-transcription coupling. PLoS One 7: e38032. https://doi.org/10.1371/journal.pone.0038032

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (65KB)
3.

Download (186KB)
4.

Download (168KB)
5.

Download (130KB)
6.

Download (148KB)

Copyright (c) 2023 А.Н. Захарова, К.Г. Милованова, А.А. Орлова, Е.Ю. Дьякова, Ю.Г. Калинникова, О.В. Коллантай, И.Ю. Шувалов, А.В. Чибалин, Л.В. Капилевич

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies