Skip to main content

Advertisement

Log in

Ion channels and ion transporters of the transverse tubular system of skeletal muscle

  • Original Paper
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

This review focuses on the electrical properties of the transverse (T) tubular membrane of skeletal muscle, with reference to the contribution of the T-tubular system (TTS) to the surface action potential, the radial spread of excitation and its role in excitation-contraction coupling. Particularly, the most important ion channels and ion transporters that enable proper depolarization and repolarization of the T-tubular membrane are described. Since propagation of excitation along the TTS into the depth of the fibers is a delicate balance between excitatory and inhibitory currents, the composition of channels and transporters is specific to the TTS and different from the surface membrane. The TTS normally enables the radial spread of excitation and the signal transfer to the sarcoplasmic reticulum to release calcium that activates the contractile apparatus. However, due to its structure, even slight shifts of ions may alter its volume, Nernstian potentials, ion permeabilities, and consequently T-tubular membrane potential and excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian RH, Peachey LD (1973) Reconstruction of the action potential of frog sartorius muscle. J Physiol 235:103–131

    PubMed  CAS  Google Scholar 

  • Almers W (1980) Potassium concentration changes in the transverse tubules of vertebrate skeletal muscle. Fed Proc 39:1527–1532

    PubMed  CAS  Google Scholar 

  • Almers W, McCleskey EW, Palade PT (1984) A non-selective cation conductance in frog muscle membrane blocked by␣micromolar external calcium ions. J Physiol 353:565– 583

    PubMed  CAS  Google Scholar 

  • ÄmmÄla C, Moorhouse A, Gribble F, et al (1996) Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature 379:545–548

    PubMed  ADS  Google Scholar 

  • Bailey SJ, Stocksley MA, Buckel A, et al (2003) Voltage-gated sodium channels and ankyrinG occupy a different postsynaptic domain from acetylcholine receptors from an early stage of neuromuscular junction maturation in rats. J Neurosci 23:2102–2111

    PubMed  CAS  Google Scholar 

  • Beam KG, Adams BA, Niidome T, et al (1992) Function of a truncated dihydropyridine receptor as both voltage sensor and calcium channel. Nature 360:169–171

    PubMed  CAS  ADS  Google Scholar 

  • Behrens MI, Jalil P, Serani A, et al (1994) Possible role of apamin-sensitive K+ channels in myotonic dystrophy. Muscle Nerve 17:1264–1270

    PubMed  CAS  Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J␣Physiol 275:F633–F650

    PubMed  CAS  Google Scholar 

  • Brice NL, Berrow NS, Campbell V, et al (1997) Importance of the different beta subunits in the membrane expression of the alpha1A and alpha2 calcium channel subunits: studies using a depolarization-sensitive alpha1A antibody. Eur J␣Neurosci 9:749–759

    PubMed  CAS  Google Scholar 

  • Catterall WA (2001) A 3D view of sodium channels. Nature 409:988–991

    PubMed  CAS  ADS  Google Scholar 

  • Cifuentes F, Vergara J, Hidalgo C (2000) Sodium/calcium exchange in amphibian skeletal muscle fibers and isolated transverse tubules, AJP - Cell Physiol 279:C89–C97

    CAS  Google Scholar 

  • Coonan JR, Lamb GD (1998) Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad. J Physiol 509:551–564

    PubMed  CAS  Google Scholar 

  • Cooper EC, Aldape KD, Abosch A, et al (2000) Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proc Natl Acad Sci USA 97:4914–4919

    PubMed  CAS  ADS  Google Scholar 

  • Crambert G, Fuzesi M, Garty H, et al (2002) Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc Natl Acad Sci USA 99:11476–11481

    PubMed  CAS  ADS  Google Scholar 

  • De Jongh KS, Warner C, Colvin AA, et al (1991) Characterization of the two size forms of the alpha 1 subunit of skeletal muscle L-type calcium channels. Proc Natl Acad Sci USA 88:10778–10782

    PubMed  ADS  Google Scholar 

  • De Waard M, Liu H, Walker D, et al (1997) Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 385:446–450

    PubMed  ADS  Google Scholar 

  • Delpire E, Rauchman MI, Beier DR (1994) Molecular cloning and chromosome localization of a putative basolateral Na(+)-K(+)-2Cl- cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. J Biol Chem 269:25677–25683

    PubMed  CAS  Google Scholar 

  • Delpire E, Mount DB (2002) Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu Rev Physiol 64:803–843

    PubMed  CAS  Google Scholar 

  • Dorup I, Skajaa K, Clausen T (1988) A simple and rapid method for the determination of the concentrations of magnesium, sodium, potassium and sodium, potassium pumps in human skeletal muscle. Clin Sci (Lond) 74:241–248

    CAS  Google Scholar 

  • Dosnoso P, Hidalgo C (1989) Sodium-calcium exchange in transverse tubules isolated from frog skeletal muscle. Biochim Biophys Acta 978:8–16

    Google Scholar 

  • Drost G, Blok JH, Stegeman DF, et al (2001) Propagation disturbance of motor unit action potentials during transient paresis in generalized myotonia: a high-density surface EMG study. Brain 124:352–360

    PubMed  CAS  Google Scholar 

  • Dulhunty AF (1978) The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres. J Physiol 276:67–82

    PubMed  CAS  Google Scholar 

  • Dulhunty AF (1979) Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle. J Membr Biol 45:293–310

    PubMed  CAS  Google Scholar 

  • Dulhunty AF, Haarmann CS, Green D (2002) Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle. Prog Biophys Mol Biol 79:45–75

    PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, et al (2002) Chait BT, MacKinnon R: X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    PubMed  CAS  ADS  Google Scholar 

  • Ewart HS, Klip A (1995) Hormonal regulation of the Na+-K+-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol 269:C295–C311

    PubMed  CAS  Google Scholar 

  • Fahlke C (2001) Ion permeation and selectivity in ClC-type chloride channels. Am J Physiol Renal Physiol 280:F748–F757

    PubMed  CAS  Google Scholar 

  • Ferenczi EA, Fraser JA, Chawla S (2003) Membrane potential stabilization in amphibian skeletal muscle fibres in hypertonic solutions. J Physiol 555/2:423–438

    Google Scholar 

  • Fleig A, Penner R (1996) Silent calcium channels generate excessive tail currents and facilitation of calcium currents in rat skeletal myoballs. J Physiol 494:141–153

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C (2004) Chapter 11: the membrane systems of muscle cells. In: Engel A.G., Franzini-Armstrong C. (Eds.), Myology, vol 2. Third ed. McGraw-Hill, New York, pp. 232–256

    Google Scholar 

  • Franzini-Armstrong C, Jorgensen AO (1994) Structure and development of E-C coupling units in skeletal muscle. Ann Rev Physiol 56:509–534

    CAS  Google Scholar 

  • Fraysse B, Rouaud T, Millour M (2001) Fontaine-Perus, J., Gardahaut MF, Levitsky DO: Expression of the Na+/Ca2+ exchanger in skeletal muscle. Am J Physiol Cell Physiol 280:C146–C154

    PubMed  CAS  Google Scholar 

  • Gage PW, Eisenberg RS, (1969a) Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers. J Gen Physiol 53:265–78

    CAS  Google Scholar 

  • Gage PW, Eisenberg RS, (1969b) Action potentials, afterpotentials, and excitation–contraction coupling in frog sartorius fibers without transverse tubules. J Gen Physiol 53:298–310

    CAS  Google Scholar 

  • Geukes Foppen RJ, Van Mil HG, Van Heukelom JS (2002) Effects of chloride transport on bistable behaviour of the membrane potential in mouse skeletal muscle. J Physiol 542:181–191

    PubMed  CAS  Google Scholar 

  • Gillen CM, Brill S, Payne JA, et al (1996) Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family. J Biol Chem 271:16237–16244

    PubMed  CAS  Google Scholar 

  • Gosmanov AR, Lindinger MI, Thomason DB (2003) Riding the tides: K+ concentration and volume regulation by muscle Na+-K+-2Cl- cotransport activity. News Physiol Sci 18:196–200

    PubMed  CAS  Google Scholar 

  • Gurnett CA, Campbell KP, (1996a) Transmembrane auxiliary subunits of voltage-dependent ion channels. J Biol Chem 271:27975–27978

    CAS  Google Scholar 

  • Gurnett CA, De Waard M, Campbell KP, (1996b) Dual function of the voltage-dependent Ca2+ channel α2δ subunit in current stimulation and subunit interaction. Neuron 16:431–440

    CAS  Google Scholar 

  • Gurnett CA, Kahl SD, Anderson RD, Campbell KP (1995) Absence of the skeletal muscle sarcolemma chloride channel ClC-1 in myotonic mice. J Biol Chem 270:9035–9038

    PubMed  CAS  Google Scholar 

  • Hundal HS, Marette A, Mitsumoto Y, et al (1992) Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K+-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem 267:5040–5043

    PubMed  CAS  Google Scholar 

  • Isenring P, Jacoby SC, Forbush B, III (1998) The role of transmembrane domain 2 in cation transport by the Na-K-Cl cotransporter. Proc Natl Acad Sci USA 95:7179–7184

    PubMed  CAS  ADS  Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric Current Flow In Excitable Cells. Clarendon Press, Oxford, 502ff

    Google Scholar 

  • Jay SD, Sharp AH, Kahl SD, et al (1991) Structural characterization of the dihydropyridine-sensitive calcium channel alpha2-subunit and the associated delta peptides. J Biol Chem 266:3287–3293

    PubMed  CAS  Google Scholar 

  • Jäger H, Rauer H, Nguyen AN, et al (1998) Regulation of mammalian Shaker-related K+ channels: evidence for non-conducting closed and non-conducting inactivated states. J␣Physiol 506:291–301

    PubMed  Google Scholar 

  • Juel C, Grunnet L, Holse M, et al (2001) Reversibility of exercise-induced translocation of Na+-K+ pump subunits to the plasma membrane in rat skeletal muscle. Pflügers Arch 443:212–217

    PubMed  CAS  Google Scholar 

  • Jurkat-Rott K, Mitrovic N, Hang C, et al (2000) Voltage sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci USA 97:9549–9554

    PubMed  CAS  ADS  Google Scholar 

  • Jurkat-Rott K, Lehmann-Horn F, Elbaz A, et al (1994) A calcium channel mutation causing hypokalemic periodic paralysis. Hum Mol Genet 3:1415–1419

    PubMed  CAS  Google Scholar 

  • Jurkat-Rott K, Uetz U, Pika-Hartlaub U, et al (1998) Calcium currents and transients of native and heterologously expressed mutant skeletal muscle DHP receptor alpha1 subunits (R528H). FEBS Lett 423:198–204

    PubMed  CAS  Google Scholar 

  • Jurkat-Rott K, Lehmann-Horn F (2004) Chapter 10: Ion channels and electrical properties of skeletal muscle. In: Engel AG, Franzini-Armstrong C (Eds.), Myology, vol 2. third edn. McGraw-Hill, New York, pp. 203–231

    Google Scholar 

  • Jurkat-Rott K, Lehmann-Horn F (2005) Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 115:2000–2009

    PubMed  CAS  Google Scholar 

  • Kamouchi M, Van den Bremt K, Eggermont J, et al (1997) Modulation of inwardly rectifying potassium channels in cultured bovine pulmonary artery endothelial cells. J Physiol 504(Pt3):545–556

    PubMed  CAS  Google Scholar 

  • Kjeldsen K, Norgaard A, Gotzsche CO, et al (1984) Effect of thyroid function on number of Na-K pumps in human skeletal muscle. Lancet 2:8–10

    PubMed  CAS  Google Scholar 

  • Kristensen M, Hansen T, Juel C (2006) Membrane proteins involved in potassium shifts during muscle activity and fatigue. AJP – Reg Integr Comp Physiol 290:R766–R772

    CAS  Google Scholar 

  • Krolenko SA, Lucy JA (2002) Vacuolation in T-tubules as a model for tubular-vesicular transformations in biomembrane systems. Cell Biol Int 26:893–904

    PubMed  CAS  Google Scholar 

  • Lacerda AE, Kim HS, Ruth P, et al (1991) Normalization of current kinetics by interaction between the alpha1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 352:527–530

    PubMed  CAS  ADS  Google Scholar 

  • Lamb GD (2005) Rippling muscle disease may be caused by “silent” action potentials in the tubular system of skeletal muscle fibers. Muscle Nerve 31:652–658

    PubMed  Google Scholar 

  • Lavoie L, Levenson R, Martin-Vasallo P, et al (1997) The molar ratios of alpha and beta subunits of the Na+-K+-ATPase differ in distinct subcellular membranes from rat skeletal muscle. Biochemistry 36:7726–7732

    PubMed  CAS  Google Scholar 

  • Läuger P (1991) Kinetic basis of voltage dependence of the Na,K-pump. Soc Gen Physiol Ser 46:303–315

    PubMed  Google Scholar 

  • Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1371

    PubMed  CAS  Google Scholar 

  • Lerche H, Fahlke C, Iaizzo PA, et al (1995) Characterization of the high-conductance Ca2+-activated K+ channel in adult human skeletal muscle. Pflügers Arch 429:738–747

    PubMed  CAS  Google Scholar 

  • Lerche H, Mitrovic N, Dubowitz V, et al (1996) Paramyotonia congenita: the R1448P Na+ channel mutation in adult human skeletal muscle. Ann Neurol 39:599–608

    PubMed  CAS  Google Scholar 

  • Li Z, Matsuoka S, Hryshko LV, et al (1994) Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J Biol Chem 269:17434–17439

    PubMed  CAS  Google Scholar 

  • Lindinger MI, Hawke TJ, Lipskie SL, et al (2002) K+ transport and volume regulatory response by NKCC in resting rat hindlimb skeletal muscle. Cell Physiol Biochem 12:279–292

    PubMed  CAS  Google Scholar 

  • Ling GN, Kromash MH (1967) The extracellular space of voluntary muscle tissues. J Gen Physiol 50:677–694

    PubMed  CAS  Google Scholar 

  • Lohn M, Furstenau M, Sagach V, et al (2000) Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circ Res 87:1034–1039

    PubMed  CAS  Google Scholar 

  • Lopez-Barneo J, Hoshi T, Heinemann SH, et al (1993) Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Recept Channels 1:61–71

    PubMed  CAS  Google Scholar 

  • Lytle C, McManus T (2002) Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride. Am J Physiol Cell Physiol 283:C1422–C1431

    PubMed  CAS  Google Scholar 

  • Mindell JA, Maduke M, Miller C, et al (2001) Projection structure of a ClC-type chloride channel at 6.5°A resolution. Nature 409:219–223

    PubMed  CAS  ADS  Google Scholar 

  • Mobley BA, Eisenberg BR (1975) Sizes of components in frog skeletal muscle measured by methods of stereology. J Gen Physiol 66:31–45

    PubMed  CAS  Google Scholar 

  • Monnier N, Procaccio V, Stieglitz P, et al (1997) Malignant-hyperthermia susceptibility is associated with a mutation of␣the α1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet 60:1316–1325

    PubMed  CAS  Google Scholar 

  • Moore-Hoon ML, Turner RJ (2000) The structural unit of the secretory Na+-K+-2Cl cotransporter (NKCC1) is a homodimer. Biochemistry 39:3718–3724

    PubMed  CAS  Google Scholar 

  • Mount DB, Gamba G (2001) Renal potassium-chloride cotransporters. Curr Opin Nephrol Hypertens 10:685–691

    PubMed  CAS  Google Scholar 

  • Mount DB, Mercado A, Song L (1999) Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem 274:16355–16363

    PubMed  CAS  Google Scholar 

  • Neelands TR, Herson PS, Jacobson D, et al (2001) Small-conductance calcium-activated potassium currents in mouse hyperexcitable denervated skeletal muscle. J Physiol 536:397–407

    PubMed  CAS  Google Scholar 

  • Nicoll DA, Ottolia M, Philipson KD (2002) Toward a topological model of the NCX1 exchanger. Ann NY Acad Sci 976:11–18

    Article  PubMed  CAS  ADS  Google Scholar 

  • Nielsen JJ, Kristensen M, Hellsten Y, et al (2003) Localization and function of ATP-sensitive potassium channels in human skeletal muscle. AJP-Regul integr Comp Physiol 284:R558–R563

    CAS  Google Scholar 

  • Nakai J, Sekiguchi N, Rando TA, et al (1998) Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. J Biol Chem 273:13403–13406

    PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    PubMed  CAS  Google Scholar 

  • Palade PT, Barchi RL (1977) On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids. J Gen Physiol 69:879–896

    PubMed  CAS  Google Scholar 

  • Paolini C, Fessenden JD, Pessah IN, et al (2004) Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci USA 101:12748–12752

    PubMed  CAS  ADS  Google Scholar 

  • Pardo LA, Heinemann SH, Terlau H, et al (1992) Extracellular K+ specifically modulates a rat brain K+ channel. Proc Natl Acad Sci USA 89:2466–2470

    PubMed  CAS  ADS  Google Scholar 

  • Pedersen TH, Nielsen OB, Lamb GD, et al (2004) Intracellular acidosis enhances the excitability of working muscle. Science 305:1144–1147

    PubMed  CAS  ADS  Google Scholar 

  • Pestov NB, Adams G, Shakhparonov MI, et al (1999) Identification of a novel gene of the X, K-ATPase beta-subunit family that is predominantly expressed in skeletal and heart muscles. FEBS Lett 456:243–248

    PubMed  CAS  Google Scholar 

  • Posterino GS, Lamb GD, Stephenson DG (2000) Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat. J␣Physiol 527:131–137

    PubMed  CAS  Google Scholar 

  • Pusch M, Jentsch TJ (1994) Molecular physiology of voltage-gated chloride channels. Physiol Rev 74:813–827

    PubMed  CAS  Google Scholar 

  • Pushkin A, Abuladze N, Lee I, et al (1999) Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family. J Biol Chem 274:16569–16575

    PubMed  CAS  Google Scholar 

  • Race JE, Makhlouf FN, Logue PJ, et al (1999) Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. AJP-Cell Physiol 46:C1210–C1219

    Google Scholar 

  • Renaud JF, Desnuelle C, Schmid-Antomarchi H, et al (1986) Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature 319:678–680

    PubMed  CAS  ADS  Google Scholar 

  • Rüdel R, Lehmann-Horn F, Ricker K, et al (1984) Hypokalemic periodic paralysis: in vitro investigation of muscle fiber membrane parameters. Muscle Nerve 7:110–120

    PubMed  Google Scholar 

  • Sacchetto R, Margreth A, Pelosi M, et al (1996) Colocalization of the dihydropyridine receptor, the plasma-membrane calcium ATPase isoform 1 and the sodium/calcium exchanger to the junctional-membrane domain of transverse tubules of rabbit skeletal muscle. Eur J Biochem 237:483–488

    PubMed  CAS  Google Scholar 

  • Sato C, Ueno Y, Asai K, et al (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409:1047–1051

    PubMed  CAS  ADS  Google Scholar 

  • Schreiber M, Yuan A, Salkoff L (1999) Transplantable sites confer calcium sensitivity to BK channels. Nature Neurosci 2:416–421

    PubMed  CAS  Google Scholar 

  • Schroeder BC, Hechenberger M, Weinreich F (2000) KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 275:24089–24095

    PubMed  CAS  Google Scholar 

  • Singer D, Biel M, Lotan I (1991) The roles of the subunits in the function of the calcium channel. Science 253:1553–1557

    PubMed  CAS  ADS  Google Scholar 

  • Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603

    PubMed  CAS  Google Scholar 

  • Sipos I, Pika-Hartlaub U, Hofmann F, et al (2000) Effects of the dihydropyridine receptor subunits gamma and alpha2delta on the kinetics of heterologously expressed L-type Ca2+ channels. Pflügers Arch 439:691–699

    PubMed  CAS  Google Scholar 

  • Steinmeyer K, Ortland C, Jentsch TJ (1991) Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354:301–304

    PubMed  CAS  ADS  Google Scholar 

  • Swift, F., Stromme, T.A., Amundsen, B., et al. (2006) Slow diffusion of K+ in the t-tubules of rat cardiomyocytes. J. Appl. Physiol. Jun 8 [Epub ahead of print]

  • Tanabe T, Beam KG, Adams BA, et al (1990) Regions of the␣skeletal muscle dihydropyridine receptor critical for␣excitation–contraction coupling. Nature 346:567– 569

    PubMed  CAS  ADS  Google Scholar 

  • Thompson CB, McDonough AA (1996) Skeletal muscle Na,K-ATPase alpha and beta subunit protein levels respond to hypokalemic challenge with isoform and muscle type specificity. J Biol Chem 271:32653–32658

    PubMed  CAS  Google Scholar 

  • Thomsen P, Roepstorff K, Stahlhut M, et al (2002) Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13:238–250

    PubMed  CAS  Google Scholar 

  • Trouet D, Nilius B, Jacobs A, et al (1999) Caveolin-1 modulates the activity of the volume-regulated chloride channel. J␣Physiol 520:113–119

    PubMed  CAS  Google Scholar 

  • Tseng-Crank J, Godinot N, Johansen TE, et al (1996) Cloning, expression, and distribution of a Ca2+-activated K+ channel beta-subunit from human brain. Proc Natl Acad Sci USA 93:9200–9205

    PubMed  CAS  ADS  Google Scholar 

  • Ursu D, Schuhmeier RP, Freichel M, et al (2004) Altered inactivation of Ca2+ current and Ca2+ release in mouse muscle fibers deficient in the DHP receptor gammal subunit. J Gen Physiol 124:605–618

    PubMed  CAS  Google Scholar 

  • Van Heukelom JS (1991) Role of the anomalous rectifier in determining membrane potentials of mouse muscle fibres at low extracellular K+. J Physiol 434:549–560

    Google Scholar 

  • Van Mil HG, Geukes Foppen RJ, Van Heukelom JS (1997) The influence of bumetanide on the membrane potential of mouse skeletal muscle cells in isotonic and hypertonic media. Br J Pharmacol 120:39–44

    Article  PubMed  Google Scholar 

  • Varadi G, Lory P, Schultz D, et al (1991) Acceleration of activation and inactivation by the beta subunit of the skeletal muscle calcium channel. Nature 352:159–162

    PubMed  CAS  ADS  Google Scholar 

  • Vullhorst D, Jockusch H, Bartsch JW (2001) The genomic basis of K(V)3.4 potassium channel mRNA diversity in mice. Gene 264:29–35

    PubMed  CAS  Google Scholar 

  • Vullhorst D, Klocke R, Bartsch JW, et al (1998) Expression of the potassium channel KV3.4 in mouse skeletal muscle parallels fiber type maturation and depends on excitation pattern. FEBS Lett 421:259–262

    PubMed  CAS  Google Scholar 

  • Wagner S, Deymeer F, Kürz LL, et al (1998) The dominant chloride channel mutant G200R causing fluctuating myotonia: clinical findings, electrophysiology, and channel pathology. Muscle Nerve 21:1122–1128

    PubMed  CAS  Google Scholar 

  • Walker D, Bichet D, Campbell KP, et al (1998) A beta 4 isoform-specific interaction site in the carboxyl-terminal region of the voltage-dependent Ca2+ channel alpha 1A subunit. J␣Biol Chem 273:2361–2367

    PubMed  CAS  Google Scholar 

  • Wallinga W, Meijer SL, Alberink MJ, et al (1999) Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system. Eur Biophys J␣28:317–329

    PubMed  CAS  Google Scholar 

  • Wang MC, Velarde G, Ford RC, et al (2002) 3D structure of the skeletal muscle dihydropyridine receptor. J Mol Biol 323:85–98

    PubMed  CAS  Google Scholar 

  • Wei A, Jegla T, Salkoff L (1996) Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacol 35:805–829

    CAS  Google Scholar 

  • Yamazawa T, Takeshima H, Shimuta M, et al (1997) A region of the ryanodine receptor critical for excitation–contraction coupling in skeletal muscle. J Biol Chem 272:8161–8164

    PubMed  CAS  Google Scholar 

  • Yang J, Ellinor PT, Sather WA, et al (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161

    PubMed  CAS  ADS  Google Scholar 

  • Yarbrough TL, Lu T, Lee HC, et al (2002) Localization of cardiac sodium channels in caveolin-rich membrane domains: regulation of sodium current amplitude. Circ Res 90:443–449

    PubMed  CAS  Google Scholar 

  • Yatani A, Wakamori M, Niidome T, et al (1995) Stable expression and coupling of cardiac L-type Ca2+ channels with beta 1-adrenoceptors. Circ Res 76:335–342

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) (JU470/1) and the network on Excitation-contraction Coupling and Calcium Signaling in Health and Disease of the IHP Program funded by the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Jurkat-Rott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurkat-Rott, K., Fauler, M. & Lehmann-Horn, F. Ion channels and ion transporters of the transverse tubular system of skeletal muscle. J Muscle Res Cell Motil 27, 275–290 (2006). https://doi.org/10.1007/s10974-006-9088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-006-9088-z

Keywords

Navigation