Ultra-fast mass spectrometry for plant biochemistry: proteomics response of winter wheat to iron pre-sowing treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In recent years, ultrafast chromatography-mass spectrometry profiling of proteomes has been actively developed for biochemical studies. These methods are intended for fast/rapid monitoring of cell response to a biotic stimulus, correlation of molecular changes with biological processes and phenotype changes. To increase agricultural production, new biotechnologies are being introduced, including the use of nanomaterials. At the same time, thorough testing of new fertilizers and investigation of mechanisms of biotic effects on the germination, growth, and development of plants are required. The aim of this work was to adapt the method of ultrafast chromatography and mass spectrometry for rapid quantitative profiling of molecular changes in 7-day-old wheat seedlings that occur in response to pre-sowing seed treatment with iron compounds. The experimental method is capable of analyzing up to 200 samples per day; its practical value lies in carrying out the proteomic express diagnostics of the biotic action of new treatments, including those for agricultural needs. The regulation of photosynthesis, biosynthesis of chlorophyll, porphyrin- and tetrapyrrole-containing compounds, glycolysis in shoot tissues, and polysaccharide metabolism in root tissues were shown after seed treatments with suspensions containing a polymeric film former (PEG-400, Na-CMC, Na2-EDTA), iron (II, III) nanoparticles or iron (II) sulfate. Observations at the protein level were consistent with the results of morphometry, measurements of superoxide dismutase activity and microelement analysis of 3-day-old germinated seeds and shoots and roots of 7-day-old seedlings. A characteristic molecular signature has been proposed to determine the regulation of photosynthesis and glycolytic process at the protein level. Such a signature is considered as a potential marker of the biotic effect of seed treatment with iron compounds and will be confirmed by further studies.

About the authors

T. T Kusainova

V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences;Moscow Institute of Physics and Technology (National Research University)

119334 Moscow, Russia;141701 Dolgoprudny, Moscow Region, Russia

D. D Emekeeva

V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences;Moscow Institute of Physics and Technology (National Research University)

119334 Moscow, Russia;141701 Dolgoprudny, Moscow Region, Russia

E. M Kazakova

V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences;Moscow Institute of Physics and Technology (National Research University)

119334 Moscow, Russia;141701 Dolgoprudny, Moscow Region, Russia

V. A Gorshkov

University of Southern Denmark

DK-5230 Odense M, Denmark

F. Kjeldsen

University of Southern Denmark

DK-5230 Odense M, Denmark

M. L Kuskov

V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

119334 Moscow, Russia

A. N Zhigach

V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

119334 Moscow, Russia

I. P Olkhovskaya

V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

119334 Moscow, Russia

O. A Bogoslovskaya

V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

119334 Moscow, Russia

References

  1. Ivanov, M. V., Bubis, J. A., Gorshkov, V., Tarasova, I. A., Levitsky, L. I., Lobas, A. A., Solovyeva, E. M., Pridatchenko, M. L., Kjeldsen, F., and Gorshkov, M. V. (2020) DirectMS1: MS/MS-Free identification of 1000 proteins of cellular proteomes in 5 minutes, Anal. Chem., 92, 4326-4333, doi: 10.1021/acs.analchem.9b05095.
  2. Ivanov, M. V., Tarasova, I. A., Levitsky, L. I., Solovyeva, E. M., Pridatchenko, M. L., Lobas, A. A., Bubis, J. A., and Gorshkov, M. V. (2017) MS/MS-free protein identification in complex mixtures using multiple enzymes with complementary specificity, J. Proteome Res., 16, 3989-3999, doi: 10.1021/acs.jproteome.7b00365.
  3. Wang, X., Shen, S., Rasam, S. S., and Qu, J. (2019) MS1 ion current-based quantitative proteomics: a promising solution for reliable analysis of large biological cohorts, Mass Spectrom. Rev., 38, 461-482, doi: 10.1002/mas.21595.
  4. Meyer, J. G., Niemi, N. M., Pagliarini, D. J., and Coon, J. J. (2020) Quantitative shotgun proteome analysis by direct infusion, Nat. Methods, 17, 1222-1228, doi: 10.1038/s41592-020-00999-z.
  5. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S., and Ralser, M. (2020) DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput, Nat. Methods, 17, 41-44, doi: 10.1038/s41592-019-0638-x.
  6. Ivanov, M. V., Bubis, J. A., Gorshkov, V., Abdrakhimov, D. A., Kjeldsen, F., and Gorshkov, M. V. (2021) Boosting MS1-only proteomics with machine learning allows 2000 protein identifications in single-shot human proteome analysis using 5 min HPLC gradient, J. Proteome Res., 20, 1864-1873, doi: 10.1021/acs.jproteome.0c00863.
  7. Ivanov, M. V., Bubis, J. A., Gorshkov, V., Tarasova, I. A., Levitsky, L. I., Solovyeva, E. M., Lipatova, A. V., Kjeldsen, F., and Gorshkov, M. V. (2022) DirectMS1Quant: ultrafast quantitative proteomics with MS/MS-free mass spectrometry, Anal. Chem., 94, 13068-13075, doi: 10.1021/acs.analchem.2c02255.
  8. Kashyap, P. L., Kumar, S., Jasrotia, P., Singh, D. P., and Singh, G. P. (2020) Nanotechnology in Wheat Production and Protection, in Environmental Nanotechnology Volume 4 (Dasgupta, N., Ranjan, S., and Lichtfouse, E., eds) Springer International Publishing, Cham, pp. 165-194, doi: 10.1007/978-3-030-26668-4_5.
  9. Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., and Zhou, J. (2019) Applications of nanotechnology in plant growth and crop protection: a review, Molecules, 24, 2558, doi: 10.3390/molecules24142558.
  10. Paramo, L. A., Feregrino-Pérez, A. A., Guevara, R., Mendoza, S., and Esquivel, K. (2020) Nanoparticles in agroindustry: applications, toxicity, challenges, and trends, Nanomaterials, 10, 1654, doi: 10.3390/nano10091654.
  11. Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z., and Ji, R. (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance, J. Agric. Food Chem., 68, 1935-1947, doi: 10.1021/acs.jafc.9b06615.
  12. Husen, A., and Siddiqi, K. S. (2014) Phytosynthesis of nanoparticles: concept, controversy and application, Nanoscale Res. Lett., 9, 229, doi: 10.1186/1556-276X-9-229.
  13. Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., and Schuster, E. W. (2012) Applications of nanomaterials in agricultural production and crop protection: a review, Crop Prot., 35, 64-70, doi: 10.1016/j.cropro.2012.01.007.
  14. Yasmeen, F., Raja, N. I., Razzaq, A., and Komatsu, S. (2016) Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure, Biochim. Biophys. Acta, 1864, 1586-1598, doi: 10.1016/j.bbapap.2016.08.009.
  15. Du, W., Yang, J., Peng, Q., Liang, X., and Mao, H. (2019) Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification, Chemosphere, 227, 109-116, doi: 10.1016/j.chemosphere.2019.03.168.
  16. Das, C. K., Srivastava, G., Dubey, A., Roy, M., Jain, S., Sethy, N. K., Saxena, M., Harke, S., Sarkar, S., Misra, K., Singh, S. K., Bhargava, K., Philip, D., and Das, M. (2016) Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops, Nanotechnol. Environ. Eng., 1, 2, doi: 10.1007/s41204-016-0002-7.
  17. Yuan, J., Chen, Y., Li, H., Lu, J., Zhao, H., Liu, M., Nechitaylo, G. S., and Glushchenko, N. N. (2018) New insights into the cellular responses to iron nanoparticles in Capsicum annuum, Sci. Rep., 8, 3228, doi: 10.1038/s41598-017-18055-w.
  18. Yoon, H., Kang, Y.-G., Chang, Y.-S., and Kim, J.-H. (2019) Effects of zerovalent Iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana, Nanomaterials (Basel), 9, 1543, doi: 10.3390/nano9111543.
  19. Sharma, J. K., Sihmar, M., Santal, A. R., and Singh, N. P. (2019) Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update, Biotechnol. Genet. Eng. Rev., 35, 126-160, doi: 10.1080/02648725.2019.1657682.
  20. Hossain, Z., Yasmeen, F., and Komatsu, S. (2020) Nanoparticles: synthesis, morphophysiological effects, and proteomic responses of crop plants, Int. J. Mol. Sci., 21, 3056, doi: 10.3390/ijms21093056.
  21. Yasmeen, F., Raja, N. I., Razzaq, A., and Komatsu, S. (2017) Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles, Biochim. Biophys. Acta Proteins Proteom., 1865, 28-42, doi: 10.1016/j.bbapap.2016.10.001.
  22. Leipunsky, I. O., Zhigach, A. N., Kuskov, M. L., Berezkina, N. G., Afanasenkova, E. S., Kudrov, B. V., Lopez, G. W., Vorobjeva, G. A., and Naumkin, A. V. (2019) Synthesis of TiH2 nanopowder via the Guen-Miller flow-levitation method and characterization, J. Alloys Compd., 778, 271-279, doi: 10.1016/j.jallcom.2018.11.088.
  23. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., et al. (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261-272, doi: 10.1038/s41592-019-0686-2.
  24. Elias, J. E., and Gygi, S. P. (2010) Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics, in Proteome Bioinformatics (Hubbard, S. J., and Jones, A. R., eds) Humana Press, Totowa, NJ, pp. 55-71, doi: 10.1007/978-1-60761-444-9_5.
  25. Zhang, B., Pirmoradian, M., Zubarev, R., and Käll, L. (2017) Covariation of peptide abundances accurately reflects protein concentration differences, Mol. Cell. Proteomics, 16, 936-948, doi: 10.1074/mcp.O117.067728.
  26. Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B Methodol., 57, 289-300, doi: 10.1111/j.2517-6161.1995.tb02031.x.
  27. Kazakova, E. M., Solovyeva, E. M., Levitsky, L. I., Bubis, J. A., Emekeeva, D. D., Antonets, A. A., Nazarov, A. A., Gorshkov, M. V., and Tarasova, I. A. (2022) Proteomics-based scoring of cellular response to stimuli for improved characterization of signaling pathway activity, Proteomics, 23, e2200275, doi: 10.1002/pmic.202200275.
  28. Kulmanov, M., and Hoehndorf, R. (2020) DeepGOPlus: improved protein function prediction from sequence, Bioinformatics, 36, 422-429, doi: 10.1093/bioinformatics/btz595.
  29. Klopfenstein, D. V., Zhang, L., Pedersen, B. S., Ramírez, F., Warwick Vesztrocy, A., Naldi, A., Mungall, C. J., Yunes, J. M., Botvinnik, O., Weigel, M., Dampier, W., Dessimoz, C., Flick, P., and Tang, H. (2018) GOATOOLS: A python library for gene ontology analyses, Sci. Rep., 8, 10872, doi: 10.1038/s41598-018-28948-z.
  30. Габдрахманов И. Т., Горшков М. В., Тарасова И. А. (2021) Клеточный ответ на стресс в панорамной протеомике: контроль ложноположительных результатов, Биохимия, 86, 395-408, doi: 10.31857/S0320972521030088.
  31. Zhang, Y., Hu, X., Islam, S., She, M., Peng, Y., Yu, Z., Wylie, S., Juhasz, A., Dowla, M., Yang, R., Zhang, J., Wang, X., Dell, B., Chen, X., Nevo, E., Sun, D., and Ma, W. (2018) New insights into the evolution of wheat avenin-like proteins in wild emmer wheat (Triticum dicoccoides), Proc. Natl. Acad. Sci. USA, 115, 13312-13317, doi: 10.1073/pnas.1812855115.
  32. Nagahatenna, D. S. K., Parent, B., Edwards, E. J., Langridge, P., and Whitford, R. (2020) Barley plants overexpressing ferrochelatases (HvFC1 and HvFC2) show improved photosynthetic rates and have reduced photo-oxidative damage under drought stress than non-transgenic controls, Agronomy, 10, 1351, doi: 10.3390/agronomy10091351.
  33. Masuda, T., Suzuki, T., Shimada, H., Ohta, H., and Takamiya, K. (2003) Subcellular localization of two types of ferrochelatase in cucumber, Planta, 217, 602-609, doi: 10.1007/s00425-003-1019-2.
  34. Cornah, J. E., Roper, J. M., Singh, D. P., and Smith, A. G. (2002) Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.), Biochem. J., 362, 423-432, doi: 10.1042/bj3620423.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies