Skip to main content

Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics

  • Protocol
  • First Online:
Proteome Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 604))

Abstract

Accurate and precise methods for estimating incorrect peptide and protein identifications are crucial for effective large-scale proteome analyses by tandem mass spectrometry. The target-decoy search strategy has emerged as a simple, effective tool for generating such estimations. This strategy is based on the premise that obvious, necessarily incorrect “decoy” sequences added to the search space will correspond with incorrect search results that might otherwise be deemed to be correct. With this knowledge, it is possible not only to estimate how many incorrect results are in a final data set but also to use decoy hits to guide the design of filtering criteria that sensitively partition a data set into correct and incorrect identifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eng, J. K., McCormack, A. L., and Yates, J. R. I. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5, 976-89.

    Article  CAS  Google Scholar 

  2. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-67.

    Article  CAS  PubMed  Google Scholar 

  3. Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., Yang, X., Shi, W., and Bryant, S. H. (2004) Open mass spectrometry search algorithm. J Proteome Res 3, 958-64.

    Article  CAS  PubMed  Google Scholar 

  4. Craig, R., and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466-7.

    Article  CAS  PubMed  Google Scholar 

  5. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74, 5383-92.

    Article  CAS  PubMed  Google Scholar 

  6. Deutsch, E. W., Lam, H., and Aebersold, R. (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9, 429-34.

    Article  CAS  PubMed  Google Scholar 

  7. Prince, J. T., Carlson, M. W., Wang, R., Lu, P., and Marcotte, E. M. (2004) The need for a public proteomics repository. Nat Biotechnol 22, 471-2.

    Article  CAS  PubMed  Google Scholar 

  8. Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., and Apweiler, R. (2004) The International Protein Index: an integrated database for proteomics experiments. Proteomics 4, 1985-8.

    Article  CAS  PubMed  Google Scholar 

  9. (2008) The universal protein resource (UniProt). Nucleic Acids Res 36, D190-5.

    Google Scholar 

  10. Bakalarski, C. E., Haas, W., Dephoure, N. E., and Gygi, S. P. (2007) The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics. Anal Bioanal Chem 389, 1409-19.

    Article  CAS  PubMed  Google Scholar 

  11. Balgley, B. M., Laudeman, T., Yang, L., Song, T., and Lee, C. S. (2007) Comparative evaluation of tandem MS search algorithms using a target-decoy search strategy. Mol Cell Proteomics 6, 1599-608.

    Article  CAS  PubMed  Google Scholar 

  12. Elias, J. E., Haas, W., Faherty, B. K., and Gygi, S. P. (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2, 667-75.

    Article  CAS  PubMed  Google Scholar 

  13. Sadygov, R. G., Cociorva, D., and Yates, J. R., III (2004) Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Methods 1, 195-202.

    Article  CAS  PubMed  Google Scholar 

  14. Elias, J. E., and Gygi, S. P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4, 207-14.

    Article  CAS  PubMed  Google Scholar 

  15. Higdon, R., Hogan, J. M., Van Belle, G., and Kolker, E. (2005) Randomized sequence databases for tandem mass spectrometry peptide and protein identification. OMICS 9, 364-79.

    Article  CAS  PubMed  Google Scholar 

  16. Kall, L., Storey, J. D., MacCoss, M. J., and Noble, W. S. (2008) Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res 7, 29-34.

    Article  PubMed  Google Scholar 

  17. Moore, R. E., Young, M. K., and Lee, T. D. (2002) Qscore: an algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectrom 13, 378-86.

    Article  CAS  PubMed  Google Scholar 

  18. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., and Gygi, S. P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2, 43-50.

    Article  CAS  PubMed  Google Scholar 

  19. Haas, W., Faherty, B. K., Gerber, S. A., Elias, J. E., Beausoleil, S. A., Bakalarski, C. E., Li, X., Villen, J., and Gygi, S. P. (2006) Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol Cell Proteomics 5, 1326-37.

    Article  CAS  PubMed  Google Scholar 

  20. Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J., and Gygi, S. P. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-92.

    Article  CAS  PubMed  Google Scholar 

  21. Elias, J. E., Gibbons, F. D., King, O. D., Roth, F. P., and Gygi, S. P. (2004) Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat Biotechnol 22, 214-19.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, X., Han, G., Ye, M., and Zou, H. (2007) Optimization of filtering criterion for SEQUEST database searching to improve proteome coverage in shotgun proteomics. BMC Bioinformatics 8, 323.

    Article  PubMed  Google Scholar 

  23. Kall, L., Canterbury, J. D., Weston, J., Noble, W. S., and MacCoss, M. J. (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4, 923-5.

    Article  PubMed  Google Scholar 

  24. Binz, P. A., Barkovich, R., Beavis, R. C., Creasy, D., Horn, D. M., Julian, R. K., Jr., Seymour, S. L., Taylor, C. F., and Vandenbrouck, Y. (2008) Guidelines for reporting the use of mass spectrometry informatics in proteomics. Nat Biotechnol 26, 862.

    Article  CAS  PubMed  Google Scholar 

  25. Bradshaw, R. A., Burlingame, A. L., Carr, S., and Aebersold, R. (2006) Reporting protein identification data: the next generation of guidelines. Mol Cell Proteomics 5, 787-8.

    Article  CAS  PubMed  Google Scholar 

  26. Taylor, C. F. (2006) Minimum reporting requirements for proteomics: a MIAPE primer. Proteomics 6 Suppl 2, 39-44.

    Article  PubMed  Google Scholar 

  27. Huttlin, E. L., Hegeman, A. D., Harms, A. C., and Sussman, M. R. (2007) Prediction of error associated with false-positive rate determination for peptide identification in large-scale proteomics experiments using a combined reverse and forward peptide sequence database strategy. J Proteome Res 6, 392-98.

    Article  CAS  PubMed  Google Scholar 

  28. Kall, L., Storey, J. D., MacCoss, M. J., and Noble, W. S. (2008) Posterior error probabilities and false discovery rates: two sides of the same coin. J Proteome Res 7, 40-4.

    Article  PubMed  Google Scholar 

  29. Tang, W. H., Shilov, I. V., and Seymour, S. L. (2008) Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 7(9):3661-7.

    Article  CAS  PubMed  Google Scholar 

  30. Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646-58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health (NIH) GM67945 and HG00041 (S.P.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Gygi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Elias, J.E., Gygi, S.P. (2010). Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. In: Hubbard, S., Jones, A. (eds) Proteome Bioinformatics. Methods in Molecular Biology™, vol 604. Humana Press. https://doi.org/10.1007/978-1-60761-444-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-444-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-443-2

  • Online ISBN: 978-1-60761-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics