Selective oxidation of the 4-ethyl-3-methylcinnoline methylene group by al2o3-supported chromium oxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The optimal conditions for the oxidation of the methylene group in 4-ethyl-3-methylcinnoline to the corresponding ketone, 3-methyl-4-acetylcinnoline, were selected. It was shown that preliminary deposition of 4-ethyl-3-methylcinnoline on some inorganic substrates has a significant effect both on the selectivity of the oxidation of only the methylene group and on a high degree of conversion to the target product.

About the authors

S. Yu. Chikunov

Institute of Chemistry, Tyumen State University;Tyumen State University

E. A Balakina

Institute of Chemistry, Tyumen State University

I. V Kulakov

Institute of Chemistry, Tyumen State University;Tyumen State University

Email: i.v.kulakov@utmn.ru

References

  1. Bekhit A.A. // Boll. Chim. Farm. 2001. Vol. 140. N 4. P. 243.
  2. Chen C.J., Deng A.J., Liu C., Shi R., Qin H.L., Wang A.P. // Molecules. 2011. Vol. 16. N 11. P. 9049. doi: 10.3390/molecules16119049
  3. Tonk R.K., Bawa S., Chawla G., Deora G.S., Kumar S., Rathore V., Mulakayala N., Rajaram A., Kalle A.M., Afzal O. // Eur. J. Med. Chem. 2012. Vol. 57. P. 176. doi: 10.1016/j.ejmech.2012.08.045
  4. Alvarado M., Barceló M., Carro L., Masaguer C.F. // Chem. Biodivers. 2006. Vol. 3. N 1. P. 106. doi: 10.1002/cbdv.200690001
  5. Gautam N., Chourasia O. // Ind. J. Chem. (B). 2010. Vol. 49. P. 830.
  6. Unnissa S.H., Nisha N., Reddy G.K. // J. Appl. Pharm. Sci. 2015. Vol. 5. N 11. P. 121. doi: 10.7324/JAPS.2015.501121
  7. Szumilak M., Stanczak A. // Molecules. 2019. Vol. 24. P. 2271. doi: 10.3390/molecules24122271
  8. Kandeel M.M., Kamal A.M., Naguib B.H., Hassan M.A. // Anticancer Agents Med. Chem. 2018. Vol. 18. N 8. P. 1208. doi: 10.2174/187152061866618022012131
  9. Tian C., Yang C., Wu T., Lu M., Chen Y., Yang Y., Liu X., Ling Y., Deng M., Jia Y., Zhou Y. // Bioorg. Med. Chem. Lett. 2021. Vol. 15. N 48. Article ID 128271. doi: 10.1016/j.bmcl.2021.128271
  10. Richter V. // Ber. 1883. Vol. 16. N 1. P. 677.
  11. Виноградова О., Балова И. // ХГС. 2008. № 5. С. 643
  12. Vinogradova O., Balova I. // Chem. Heterocycl. Compd. 2008. Vol. 44. P. 501. doi: 10.1007/s10593-008-0070-0
  13. Kulakov I.V., Stalinskaya A.L., Chikunov S.Y., Gatilov Y.V. // New J. Chem. 2021. Vol. 45. N 7. P. 3559. doi: 10.1039/D0NJ06117D
  14. Sun P., Wu Y., Huang Y., Wu X., Xu J., Yao H., Lin A. // Org. Chem. Front. 2016. Vol. 3. N 1. P. 91. doi: 10.1039/C5QO00331H
  15. Xia H.D., Zhang Y.D., Wang Y.H., Zhang C. // Org. Lett. 2018. Vol. 20. N 13. P. 4052. doi: 10.1021/acs.orglett.8b01615
  16. Simpson J.C. // J. Chem. Soc. 1946. P. 673-675. doi: 10.1039/JR9460000673
  17. Heber D. // Der Pharmazie. 1987. Vol. 320. N 5. P. 402. doi: 10.1002/ardp.19873200505
  18. Warpehoski M.A., Chabaud B., Sharpless K.B. // J. Org. Chem. 1982. Vol. 47. N 15. P. 2897. doi: 10.1021/jo00136a017
  19. Hruszkewycz D.P., Miles K.C., Thiel O.R., Stahl S.S. // Chem. Sci. 2017. Vol. 8. N 2. P. 1282. doi: 10.1039/C6SC03831J
  20. Dali A., Rekkab-Hammoumraoui I., ChoukchouBraham A., Bachir R. // RSC Adv. 2015. Vol. 5. N 37. P. 29167. doi: 10.1039/c4ra17129b
  21. Abboud M. // Mechanisms and Catalysis. 2020. Vol. 131. N 2. P. 781. doi: 10.1007/s11144-020-01864-y

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies