Skip to main content
Log in

Immediate epoxidation of cyclohexene at room temperature using mesoporous flower-like NiO nanoparticles

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Flower-like mesoporous NiO nanoparticles (NPs) were synthesised by surfactant-assisted chemical precipitation process and evaluated as a catalyst for the epoxidation of cyclohexene using meta-chloroperoxybenzoic acid (m-CPBA) as an oxidizing agent at room temperature and 1 atm. The mesoporous NiO (MesoNiO) showed an exceptional catalytic activity for the epoxidation of cyclohexene to produce cyclohexene oxide in the optimized conditions, exhibiting an immediate reaction at room temperature with high conversion (91%) and medium selectivity (53%), using m-CPBA/cyclohexene ratio of 1.5 in CH3CN/CH2Cl2 (1:1 v/v) as a solvent. The catalytic activity of MesoNiO was compared to bulk NiO (BulkNiO). Only 65% conversion with 58% selectivity were obtained with BulkNiO. The reusability of MesoNiO catalyst has been also investigated. During four successive cycles, the conversion of cyclohexene decreased gradually to 63% for MesoNiO and to 50% for Bulk NiO with a constant cyclohexene oxide selectivity for both materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Védrine JC (2017) Catalysts 7:341–366

    Article  Google Scholar 

  2. Pergament A (2014) Oxide Electronics and Functional Properties of Transition Metal Oxides. Nova, New York

    Google Scholar 

  3. Nasseri MA, Kamali F, Zakerinasab B (2015) RSC Adv 5:26517–26520

    Article  CAS  Google Scholar 

  4. Sachdeva H, Dwivedi D, Bhattacharjee RR, Khaturia S, Saroj R (2013) J Chem. https://doi.org/10.1155/2013/606259

    Article  Google Scholar 

  5. Centi G, Cavani F, Trifirò F (2001) Selective Oxidation by Heterogeneous Catalysis. Springer, Boston

    Book  Google Scholar 

  6. Cavani F, Teles JH (2009) Chemsuschem 2:508–534

    Article  CAS  Google Scholar 

  7. Whittall J, Roberts SM (2007) Regio- and Stereo-Controlled Oxidations and Reductions. Wiley, Chichester

    Google Scholar 

  8. Kim I, Kim SM, Ha C-S (2004) Rapid Commun 25:888–893

    Article  CAS  Google Scholar 

  9. Lahcene D, Choukchou-Braham A (2018) J Chin Chem Soc 65:1529–1535

    Article  CAS  Google Scholar 

  10. Denekamp IM, Antens M, Slot TK, Rothenberg G (2018) ChemCatChem 10:1035–1041

    Article  CAS  Google Scholar 

  11. Rogers O, Pattisson S, Macginley J, Engel RV, Whiston K, Taylor SH, Hutchings GJ (2018) Catalysts 8:311–321

    Article  Google Scholar 

  12. Denekamp IM, Antens M, Slot TK, Rothenberg G (2017) ChemCatChem 10:1035–1041

    Article  Google Scholar 

  13. Dou J, Tang Y, Nguyen L, Tong X, Thapa PS, Tao FF (2016) Catal Lett 147:442–452

    Article  Google Scholar 

  14. Ghiami S, Nasseri MA, Allahresani A, Kazemnejadi M (2019) React Kinet Mech Catal 126:383–398

    Article  CAS  Google Scholar 

  15. Farahmand S, Ghiaci M (2019) Microporous Mesoporous Mater 288:109550–109560

    Article  Google Scholar 

  16. Moghe K, Sutar AK, Kang IK, Gupta KC (2019) RSC Adv 9:30823–30834

    Article  CAS  Google Scholar 

  17. Ahn HM, Bae JM, Kim MJ, Bok KH, Jeong HY, Lee SJ, Kim C (2017) Chem Eur J 23:11969–11976

    Article  CAS  Google Scholar 

  18. Li X, Ma D, Cao B, Lu Y (2017) New J Chem 41:11619–11625

    Article  CAS  Google Scholar 

  19. Dali A, Rekkab-Hammoumraoui I, El Korso S, Boudjema S, Choukchou-Braham A (2019) Bull Chem React Eng Catal 14:614–624

    Article  CAS  Google Scholar 

  20. Boudjemaa S, Rabaha H, Choukchou-Braham A (2017) Catal Acta Phys Polonica A 132:469–472

    Article  Google Scholar 

  21. Radman R, Aouissi A, Al Kahtani A, Mekhamer W (2017) Pet Chem 57:79–84

    Article  CAS  Google Scholar 

  22. Liu Y, Murata K, Inaba M, Nakajima H, Koyay M, Tomokuni K (2004) Chem Lett 33:200–201

    Article  Google Scholar 

  23. Masteri-Farahani M, Alavijeh MK, Hosseini M-S (2020) React Kinet Mech Catal 130:303–315

    Article  CAS  Google Scholar 

  24. Maksimchuk N, Lee JS, Ayupov A, Chang J-S, Kholdeeva O (2019) Catalysts 9:324–337

    Article  Google Scholar 

  25. Cao Y, Yu H, Peng F, Wang H (2014) ACS Catal 4:1617–1625

    Article  CAS  Google Scholar 

  26. Wunschik DS, Ingenbosch KN, Süss P, Liebelt U, Quint S, Dyllick-Brenzinger M, Zuhse R, Menyes U, Hoffmann-Jacobsen K, Opwis K, Gutmann JS (2020) Enzyme Microb Technol 136:109512

    Article  CAS  Google Scholar 

  27. Huang K, Wang Z, Wu D (2018) J Chem Sci 130:62

    Article  Google Scholar 

  28. Hassan HMA, Betiha MA, Elshaarawy RFM, El-Shall MS (2017) Appl Surf Sci 402:99

    Article  CAS  Google Scholar 

  29. Li Z, Wu S, Yang C, Ma Y, Fu X, Peng L, Guan J, Kan Q (2017) Mol Catal 432:267

    Article  CAS  Google Scholar 

  30. Abboud M, Abu-Haija M, Bel-Hadj-Tahar R, Mubarak AT, Ismail I, Hamdy MS (2020) New J Chem 44:3402–3411

    Article  CAS  Google Scholar 

  31. Xu X, Li L, Yu F, Peng H, Fang X, Wang X (2017) Mol Catal 441:81–91

    Article  CAS  Google Scholar 

  32. Tong S, Zheng M, Lu Y, Lin Z, Li J, Zhang X, Shi Y, He P, Zhou H (2015) J Mater Chem A 3:16177–16182

    Article  CAS  Google Scholar 

  33. Sreethawong T, Yamada Y, Kobayashi T, Yoshikawa S (2005) J Mol Catal A 24:23–32

    Article  Google Scholar 

  34. Jhung SH, Lee J-H, Cheetham AK, Férey G, Chang J-S (2006) J Catal 239:97–104

    Article  CAS  Google Scholar 

  35. Ebadi A, Mozaffari M, Shojaei S (2014) J Chem Sci 126:989–996

    Article  CAS  Google Scholar 

  36. Ted Oyama S (2008) Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, 1st edn. Elsevier, Oxford

    Google Scholar 

  37. Agarwala H, Ehret F, Chowdhury AD, Maji S, Mobin SM, Kaim W, Lahiri GK (2013) Dalton Trans 42:3721

    Article  CAS  Google Scholar 

  38. Hu R, Yang P, Pan Y, Li Y, He Y, Feng J, Li D (2017) Dalton Trans 46:13463–13471

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a research group project number R.G.P1/89/40. The author would like to express his gratitude to King Khalid University, Abha, Saudi Arabia for providing administrative and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abboud.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abboud, M. Immediate epoxidation of cyclohexene at room temperature using mesoporous flower-like NiO nanoparticles. Reac Kinet Mech Cat 131, 781–792 (2020). https://doi.org/10.1007/s11144-020-01864-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01864-y

Keywords

Navigation