Synthesis of Silver Nanoclusters and Nanoparticles in the Medium of Hyperbranched Polyester Polyamine, and the Morphology and Aggregation Properties of the Metal–Polymer Nanocomposite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A procedure was developed for the single-step synthesis of a metal–polymer nanocomposite based on silver nanoparticles and second-pseudogeneration superbranched polyester functionalized along the periphery with 3-[(2-aminoethyl)amino]propionate. Under the conditions of the synthesis in the medium of H2O or DMSO, hyperbranched polyester decorated with ethylenediamine moieties can act as both a reductant of the nanoscale silver state and a stabilizer of it. The synthesized composite nanomaterial is formed by aggregates of hyperbranched polyester polyamine doped with Ag(0) nanoclusters and nanoparticles of spheroidal symmetry with a face-centered cubic crystal lattice. The hydrodynamic diameter of aggregates and the diameter of particles increase with increasing molar ratio 
 and are 34–90 and 7–14 nm, respectively.

About the authors

V. A. Prytkov

Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

Email: mkutyreva@mail.ru
420008, Kazan, Russia

A. A. Khannanov

Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

Email: mkutyreva@mail.ru
420008, Kazan, Russia

V. G. Evtyugin

Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

Email: mkutyreva@mail.ru
420008, Kazan, Russia

A. R. Gataulina

Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

Email: mkutyreva@mail.ru
420008, Kazan, Russia

M. P. Kutyreva

Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

Author for correspondence.
Email: mkutyreva@mail.ru
420008, Kazan, Russia

References

  1. Терентьева Е.А., Апяри В.В., Кочук С.Г. и др. // Журн. аналит. химии. 2017. Т. 72. № 11. С. 978. https://doi.org/10.1134/S1061934817110107
  2. Vishwanath R., Negi B. // Curr. Res. Green Sustain. Chem. 2021. V. 4. P. 100205. https://doi.org/10.1016/j.crgsc.2021.100205
  3. Prasher P., Sharma M., Mudila H. et al. // Colloid Interface Sci. Commun. 2020. V. 35. P. 100244. https://doi.org/10.1016/j.colcom.2020.100244
  4. Skóra B., Krajewska U., Nowak A. et al. // Sci. Rep. 2021. V. 11. № 1. P. 13451. https://doi.org/10.1038/s41598-021-92812-w
  5. Pryshchepa O., Pomastowski P., Buszewski B. // Adv. Colloid Interface Sci. 2020. V. 284. P. 102246. https://doi.org/10.1016/j.cis.2020.102246
  6. Gomes H.I.O., Martins C.S.M., Prior J.A.V. // Nanomaterials. 2021. V. 11. № 4. P. 964. https://doi.org/10.3390/nano11040964
  7. Dawadi S., Katuwal S., Gupta A. et al. // J. Nanomater. 2021. V. 2021. P. 6687290. https://doi.org/10.1155/2021/6687290
  8. Meleshko A.A., Afinogenova A.G., Afinogenov G.E. et al. // Russ. J. Infect. Immun. 2020. V. 10. № 4. P. 639. https://doi.org/10.15789/2220-7619-AIA-1512
  9. Yin I.X., Zhang J., Zhao I.S. et al. // Int. J. Nanomed. 2020. V. 15. P. 2555. https://doi.org/10.2147/IJN.S246764
  10. Кричевский Г.Е. // НБИКС-Наука. Технологии. 2020. Т. 12. № 4. С. 32.
  11. Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. М.: Химия, 2000. 672 с.
  12. Михайлов М.Д. Химические методы получения наночастиц и наноматериалов. СПб.: Изд-во Политехн. ун-та, 2012. 259 с.
  13. Olenin A.Yu., Lisichkin G.V. // Russ. Chem. Rev. 2011. V. 80. № 7. P. 605. https://doi.org/10.1070/RC2011v080n07ABEH004201
  14. Gul A.R., Shaheen F., Rafique R. et al. // Chem. Eng. J. 2021. V. 407. P. 127202. https://doi.org/10.1016/j.cej.2020.127202
  15. Jalab J., Abdelwahed W., Kitaz A. et al. // Heliyon. 2021. V. 7. № 9. P. e08033. https://doi.org/10.1016/j.heliyon.2021.e08033
  16. Mani M., Pavithra S., Mohanraj K. et al. // Environ. Res. 2021. V. 199. P. 111274. https://doi.org/10.1016/j.envres.2021.111274
  17. Anees Ahmad S., Sachi Das S., Khatoon A. et al. // Mater. Sci. Energy Technol. 2020. V. 3. P. 756. https://doi.org/10.1016/j.mset.2020.09.002
  18. Xu L., Wang Y.Y., Huang J. et al. // Theranostics. 2020. V. 10. № 20. P. 8996. https://doi.org/10.7150/thno.45413
  19. Mourdikoudis S. // The Royal Society of Chemistry. 2021. P. 482. https://doi.org/10.1039/9781839163623
  20. Malassis L., Dreyfus R., Murphy R.J. et al. // RSC Adv. 2016. V. 6. № 39. P. 33092. https://doi.org/10.1039/c6ra00194g
  21. Ершов Б.Г. // Рос. хим. журн. 2001. Т. 45. № 3. С. 20.
  22. Hileuskaya K.S., Mashkin M.E., Kraskouski A.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1128. https://doi.org/10.31857/S0044457X21080067
  23. Кутырева М.П., Улахович Н.А., Кутырев Г.А. и др. Биологически активные гиперразветвленные полимеры и их металлокомплексы. М.: Прометей, 2014. 172 с.
  24. Suraj Belgaonkar M., Kandasubramanian B. // Eur. Polym. J. 2021. V. 147. P. 110301. https://doi.org/10.1016/j.eurpolymj.2021.110301
  25. Saadati A., Hasanzadeh M., Seidi F. // TrAC Trends Anal. Chem. 2021. V. 142. P. 116308. https://doi.org/10.1016/j.trac.2021.116308
  26. Esumi K., Torigoe K. // Adsorpt. Nanostructure. 2001. V. 117. P. 80. https://doi.org/10.1007/3-540-45405-5_15
  27. Esumi K., Suzuki A., Yamahira A. et al. // Langmuir. 2000. V. 16. № 6. P. 2604. https://doi.org/10.1021/la991291w
  28. Medvedeva O.I., Kambulova S.S., Ulakhovich N.A. et al. // Russ. J. Gen. Chem. 2017. V. 87. № 9. P. 1985. https://doi.org/10.1134/S1070363217090146
  29. Khannanov A.A., Rossova A.A., Ignatyeva K.A. et al. // J. Magn. Magn. Mater. 2022. V. 547. P. 168808. https://doi.org/10.1016/j.jmmm.2021.168808
  30. Evtugyn G., Porfireva A., Stepanova V. et al. // Sensors. 2013. V. 13. № 12. P. 16129. https://doi.org/10.3390/s131216129
  31. Gataulina A.R., Prytkov V.A., Ulakhovich N.A. et al. // Russ. J. Gen. Chem. 2020. V. 90. № 3. P. 425. https://doi.org/10.1134/S1070363220030159
  32. Беккер Г. Органикум. Практикум по органической химии. М.: Мир, 1979. Т. 1. 454 с.
  33. Balogh L., Valluzzi R., Laverdure K.S. et al. // J. Nanopar. Res. 1999. V. 1. P. 353. https://doi.org/10.1023/A:1010060404024
  34. Amirjani A., Firouzi F., Haghshenas D.F. // Plasmonics. 2020. V. 15. № 4. P. 1077. https://doi.org/10.1007/s11468-020-01121-x
  35. Kuzub L.I., Gur’eva L.L., Grishchuk A.A. et al. // Polymer Sci., Ser. B. 2015. V. 57. № 6. P. 608. https://doi.org/10.1134/S1560090417050062
  36. Irzhak T.F., Irzhak V.I. // Russ. J. Phys. Chem. A. 2020. V. 94. № 7. P. 1439. https://doi.org/10.1134/S0036024420070146
  37. Garcia P.R.A.F., Prymak O., Grasmik V. // Nanoscale Adv. 2020. V. 2. № 1. P. 225. https://doi.org/10.1039/c9na00569b
  38. Murahashi S.I., Imada Y. // ChemInform. 2008. V. 36. № 45. P. 497. https://doi.org/10.1002/9783527619405.ch5o

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (89KB)
3.

Download (454KB)
4.

Download (450KB)
5.

Download (48KB)
6.

Download (260KB)
7.

Download (173KB)
8.

Download (199KB)
9.

Download (1MB)
10.

Download (414KB)

Copyright (c) 2023 В.А. Прытков, А.А. Ханнанов, В.Г. Евтюгин, А.Р. Гатаулина, М.П. Кутырева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies