Decomposition of Small-Angle Scattering Profiles from Two Conformational States of 3-Isopropylmalate Dehydrogenase Using Evolving Factor Analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The separation of two conformational states of 3-isopropylmalate dehydrogenase molecules from Thermus thermophilus in solution on a gel chromatographic column, attached to a sample cell of a small-angle X-ray scattering synchrotron beamline, has been simulated. The scattering intensity profiles from the open and closed forms of the enzyme molecules were restored by evolving factor analysis (EFA) using the synthetic data set with added Poisson noise at the relative level of 3–5%. Thus, the efficiency of the EFA algorithm is confirmed in the case of two-component mixtures consisting of particles with the same molecular masses.

About the authors

P. V. Konarev

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia; National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: peter_konarev@mail.ru
Россия, Москва; Россия, Москва

V. V. Volkov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia; National Research Centre “Kurchatov Institute,”, 123182, Moscow, Russia

Author for correspondence.
Email: vvo@crys.ras.ru
Россия, Москва; Россия, Москва

References

  1. Svergun D.I., Koch M.H.J., Timmins P.A., May R.P. Small angle X-ray and neutron scattering from solutions of biological macromolecules. Oxford University Press, 2013. 358 p.
  2. Herranz-Trillo F., Groenning M., van Maarschalkerweerd A. et al. // Structure. 2017. V. 25. P. 5. https://doi.org/10.1016/j.str.2016.10.013
  3. Keller H.R., Massart D.L. // Chemom. Intell. Lab. Syst. 1992. V. 12. P. 209. https://doi.org/10.1016/0169-7439(92)80002-L
  4. Hopkins J.B., Gillilan R.E., Skou S.J. // J. Appl. Cryst. 2017. V. 50. P. 1545. https://doi.org/10.1107/S1600576717011438
  5. Konarev P.V., Graewert M.A., Jeffries C.Y. et al. // Protein Sci. 2022. V. 31. P. 269. https://doi.org/10.1002/pro.4237
  6. Panjkovich A., Svergun D.I. // Bioinformatics. 2018. V. 34. P. 1944. https://doi.org/10.1093/bioinformatics/btx846
  7. Konarev P.V., Volkov V.V. // Physics of Atomic Nuclei. 2022. V. 85. P. 2127. https://doi.org/10.1134/S1063778822090198
  8. Hayashi-Iwasaki Y., Oshima T. // Methods Enzymol. 2000. V. 324. P. 301. https://doi.org/10.1016/s0076-6879(00)24240-7
  9. Graczer E., Merlin A., Singh R.K. et al. // Mol. Biosyst. 2011. V. 7. P. 1646. https://doi.org/10.1039/C0MB00346H
  10. Pallo A., Olah J., Graczer E. et al. // FEBS J. 2014. V. 281. P. 5063. https://doi.org/10.1111/febs.13044
  11. Svergun D.I., Barberato C., Koch M.H.J. // J. Appl. Cryst. 1995. V. 28. P. 768. https://doi.org/10.1107/S0021889895007047
  12. Graczer E., Konarev P.V., Szimler. T. et al. // FEBS Lett. 2011. V. 585. P. 3297. https://doi.org/10.1016/j.febslet.2011.09.013
  13. Golub G.H., Reinsch C. // Numer. Math. 1970. V. 14. P. 403. https://doi.org/10.1007/bf02163027
  14. Ahrens J.H., Dieter U. // ACM Trans Math Software. 1982. V. 8. P. 163. https://doi.org/10.1145/355993.355997

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (798KB)
3.

Download (62KB)
4.

Download (219KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies