Skip to main content
Log in

Development of Algorithms for Analysis of Small-Angle X-Ray Scattering Data from Polydisperse and Partially Ordered Systems

  • MODELING OF NANOSTRUCTURES
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The small-angle X-ray scattering method allows studying the structure of solutions of proteins, polymers, and metal nanoparticles in the range of 1–200 nm. The development of new and improvement of the available algorithms for the analysis of experimental small-angle X-ray scattering data is an important task. This study presents a number of algorithms that make it possible to find the particle size distribution functions, restore the intensity profiles of individual components in protein mixtures, and estimate the size of the region of crystallinity and spacing distances in partially ordered systems. A number of algorithms are implemented as programs using the Qt cross-platform graphics library, which greatly expands the number of their potential users. The efficiency of the algorithms has been demonstrated on a number of theoretical and experimental small-angle X-ray scattering data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. D. I. Svergun, M. H. J. Koch, P. A. Timmins, and R. P. May, Small Angle X-ray and Neutron Scattering from Solutions of Biological Macromolecules, Vol. 19 of IUCr Texts on Crystallography (Oxford Univ. Press, Oxford, 2013). https://doi.org/10.1093/acprof:oso/9780199639533.001.0001

  2. C. M. Jeffries, M. A. Graewert, C. E. Blanchet, et al., Nat. Protect. 11, 2122 (2016).

    Article  Google Scholar 

  3. E. Mathew, A. Mirza, and N. Menhart, J. Synchrotr. Rad. 11, 314 (2004).

    Google Scholar 

  4. P. V. Konarev, M. A. Graewert, C. M. Jeffries, et al., Protein Sci. 31, 269 (2022).

    Article  Google Scholar 

  5. A. Panjkovich and D. I. Svergun, Bioinformatics 34, 1944 (2018).

    Article  Google Scholar 

  6. D. I. Svergun, J. Appl. Crystallogr. 25, 495 (1992).

    Article  Google Scholar 

  7. O. Glatter, J. Appl. Crystallogr. 13, 7 (1980).

    Article  Google Scholar 

  8. V. V. Volkov, P. V. Konarev, and A. E. Kryukova, JETP Lett. 112, 591 (2020).

    Article  ADS  Google Scholar 

  9. I. Bressler, B. R. Pauw, and A. F. Thünemann, J. Appl. Crystallogr. 48, 962 (2015).

    Article  Google Scholar 

  10. P. V. Konarev, V. V. Volkov, A. V. Sokolova, et al., J. Appl. Crystallogr. 36, 1277 (2003).

    Article  Google Scholar 

  11. I. Breßler, J. Kohlbrecher, and A. F. Thünemann, J. Appl. Crystallogr. 48, 1587 (2015).

    Article  Google Scholar 

  12. G. Alina, P. Butler, J. Cho, M. Doucet, A. Gervaise, and P. Kienzle, SasView for Small-Angle Scattering Analysis. http://www.sasview.org/.

  13. H. R. Keller and D. L. Massart, Chemom. Intell. Lab. Syst. 12, 209 (1992).

    Article  Google Scholar 

  14. K. Manalastas-Cantos, P. V. Konarev, N. R. Hajizadeh, et al., J. Appl. Crystallogr. 54, 343 (2021).

    Article  Google Scholar 

  15. M. V. Petoukhov, D. Franke, A. V. Shkumatov, et al., J. Appl. Crystallogr. 45, 342 (2012).

    Article  Google Scholar 

  16. D. I. Svergun, P. V. Konarev, V. V. Volkov, et al., J. Chem. Phys. 113, 1651 (2000).

    Article  ADS  Google Scholar 

  17. G. V. Schulz, Z. Phys. Chem. B 30, 379 (1935).

    Article  ADS  Google Scholar 

  18. J. Wagner, J. Appl. Crystallogr. 45, 513 (2012).

    Article  Google Scholar 

  19. J.-P. Hansen and J. B. Hayter, Mol. Phys. 46, 651 (1982).

    Article  ADS  Google Scholar 

  20. L. M. Bronstein, R. L. Karlinsey, Z. Yi, et al., Chem. Mater. 19, 6258 (2007).

    Article  Google Scholar 

  21. B. K. Vainshtein, Diffraction of X-Rays by Chain Molecules (Amsterdam, Elsevier, 1966).

    Google Scholar 

  22. https://www.math.utah.edu/software/minpack.html.

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the Federal Scientific and Technical Program for the Development of Synchrotron and Neutron Research and Research Infrastructure for 2019–2027, agreement no. 075-15-2021-1355 of October 12, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Konarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konarev, P.V., Volkov, V.V. Development of Algorithms for Analysis of Small-Angle X-Ray Scattering Data from Polydisperse and Partially Ordered Systems. Phys. Atom. Nuclei 85, 2127–2132 (2022). https://doi.org/10.1134/S1063778822090198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822090198

Keywords:

Navigation