Stimuli-Responsive Drug Delivery Systems Based on Bilayer Lipid Vesicles: New Trends

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of new efficient methods for combating serious diseases, among which, oncological and infectious diseases hold a special place, remains to be an urgent challenge of biomedicine and biotechnology. Currently, the efforts of scientists are focused on the search for drug systems that provide high efficiency of treatment with minimal impacts on a human body. The development of this field has led to the creation of stimuli-responsive liposomes that can release an encapsulated drug under a specific stimulus, such as temperature, pH, electromagnetic field, light, etc. Being stimulated, lipid bilayer vesicles change their structure, size, surface charge, or phase state, thus leading to a controlled release of the drug in a specific place of the body, thereby resulting in a more accurate and efficient delivery. This review discusses the current trends in the development of liposome-based stimuli-responsive systems for the controlled delivery of biologically active substances.

About the authors

A. A. Efimova

Department of Chemistry, Moscow State University, 119991, Moscow, Russia; Department of Materials Sciences, Shenzhen MSU-BIT University, 518172, Shenzhen, China

Email: ephimova@genebee.msu.su
Россия, 119991, Москва, Ленинские горы, 1, стр. 3

A. V. Sybachin

Department of Chemistry, Moscow State University, 119991, Moscow, Russia; Department of Materials Sciences, Shenzhen MSU-BIT University, 518172, Shenzhen, China

Author for correspondence.
Email: ephimova@genebee.msu.su
Россия, 119991, Москва, Ленинские горы, 1, стр. 3

References

  1. Li Y.-J., Lei Y.-H., Yao N. et al. Autophagy and multidrug resistance in cancer // Chinese Journal of Cancer. 2017. V. 36. P. 1. https://doi.org/10.1186/s40880-017-0219-2
  2. Migliore R., D’Antona N., Sgarlata C. et al. Co-loading of temozolomide and curcumin into a calix [4] arene-based nanocontainer for potential combined chemotherapy: Binding features, enhanced drug solubility and stability in aqueous medium // Nanomaterials. 2021. V. 11. № 11. P. 2930. https://doi.org/10.3390/nano11112930
  3. Petrov R.A., Mefedova S.R., Yamansarov E.Y. et al. New small-molecule glycoconjugates of docetaxel and GalNAc for targeted delivery to hepatocellular carcinoma // Molecular Pharmaceutics. 2020. V. 18. № 1. P. 461–468. https://doi.org/10.1021/acs.molpharmaceut.0c00980
  4. Vaneev A.N., Kost O.A., Eremeev N.L. et al. Superoxide dismutase 1 nanoparticles (nano-SOD1) as a potential drug for the treatment of inflammatory eye diseases // Biomedicines. 2021. V. 9. № 4. P. 396. https://doi.org/10.3390/biomedicines9040396
  5. Pottanam Chali S., Ravoo B. J. Polymer Nanocontainers for Intracellular Delivery. Angewandte Chemie (International ed. in English) // 2020. V. 9 № 8. P. 2962–2972. https://doi.org/10.1002/anie.201907484
  6. Zhang J., Lin Y., Lin Z. et al. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy // Advanced Science. 2022. V. 9. № 5. P. 2103444. https://doi.org/10.1002/advs.202103444
  7. Barba A.A., Bochicchio S., Dalmoro A. et al. Engineering approaches for drug delivery systems production and characterization // Pharmaceutics. 2019. V. 581. P. 119267. https://doi.org/10.1016/j.ijpharm.2020.119267
  8. Hou X., Zaks T., Langer R. et al. Lipid nanoparticles for mRNA delivery // Nat. Rev. Mater. 2021. V. 6. P. 1078–1094. https://doi.org/10.1038/s41578-021-00358-0
  9. Wahlich J., Desai A., Greco F. et al. Nanomedicines for the delivery of biologics // Pharmaceutics. 2019. V. 11. № 5. P. 210. https://doi.org/10.3390/pharmaceutics11050210
  10. Karim M.E., Shetty J., Islam R.A. et al. Strontium sulfite: A new pH-responsive inorganic nanocarrier to deliver therapeutic siRNAs to cancer cells. Pharmaceutics // 2019. V. 11. № 2. P. 89. https://doi.org/10.3390/pharmaceutics11020089
  11. Cui Y., Yang Y., Ma M. et al. Reductive responsive micelle overcoming multidrug resistance of breast cancer by co-delivery of DOX and specific antibiotic // Journal of Materials Chemistry B. 2019. V. 7. № 40. P. 6075–6086. https://doi.org/10.1039/C9TB01093A
  12. Zhang L., Wu C., Mu S. et al. A chemotherapeutic self-sensibilized drug carrier delivering paclitaxel for the enhanced chemotherapy to human breast MDA-MB-231 cells // Colloids Surf. B: Biointerfaces. 2019. V. 181. P. 902–909. https://doi.org/10.1016/j.colsurfb.2019.06.052
  13. Madhumanchi S., Suedee R., Nakpheng T. et al. Binding interactions of bacterial lipopolysaccharides to polymyxin B in an amphiphilic carrier ‘sodium deoxycholate sulfate’ // Colloids Surf. B: Biointerfaces. 2019. V. 182. P. 110374. https://doi.org/10.1016/j.colsurfb.2019.110374
  14. Wells C.M., Harris M., Choi L. et al. Stimuli-responsive drug release from smart polymers // J. Funct. Biomater. 2019. V. 10. № 3. P. 34. https://doi.org/10.3390/jfb10030034
  15. Dhamecha D., Movsas R., Sano U. et al. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future // International Journal of Pharmaceutics. 2019. V. 569. P. 118627. https://doi.org/10.1016/j.ijpharm.2019.118627
  16. Efimova A.A., Sorokina S.A., Trosheva, K.S. et al. Complexes of cationic pyridylphenylene dendrimers with anionic liposomes: The role of dendrimer composition in membrane structural changes // Int. J. Mol. Sci. 2023. V. 24. № 3. P. 2225. https://doi.org/10.3390/ijms24032225
  17. Angelova A., Garamus V.M., Angelov B. et al. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and antitumor agents // Advances in Colloid and Interface Science. 2017. V. 249. P. 331–345. https://doi.org/10.1016/j.cis.2017.04.006
  18. Carmona-Ribeiro A.M., de Melo Carrasco L.D. Novel Formulations for antimicrobial peptides // International Journal of Molecular Sciences. 2014. V. 15. № 10. P. 18040–18083. https://doi.org/10.3390/ijms151018040
  19. Li M., Du C., Guo N. et al. Composition design and medical application of liposomes // European Journal of Medicinal Chemistry. 2019. V. 164. P. 640–653. https://doi.org/10.1016/j.ejmech.2019.01.007
  20. Tretiakova D., Le-Deigen I., Onishchenko N. Phosphatidylinositol stabilizes fluid-phase liposomes loaded with a melphalan lipophilic prodrug // Pharmaceutics. 2021. V. 13. № 4. P. 473. https://doi.org/10.3390/pharmaceutics13040473
  21. Sheoran R., Khokra S.L., Chawla V. et al. Recent patents, formulation techniques, classification and characterization of liposomes // Recent patents on nanotechnology. 2019. V. 13. № 1. P. 17–27. https://doi.org/10.2174/1872210513666181127110413
  22. Amarandi R.-M., Ibanescu A., Carasevici E. et al. Liposomal-based formulations: A path from basic research to temozolomide delivery inside glioblastoma tissue // Pharmaceutics. 2022. V. 14. P. 308. https://doi.org/10.3390/pharmaceutics14020308
  23. Park H., Otte A., Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond // Journal of Controlled Release. 2022. V. 342. P. 53–65. https://doi.org/10.1016/j.jconrel.2021.12.030
  24. Barba A.A., Bochicchio S., Dalmoro A. et al. Lipid delivery systems for nucleic-acid-based-drugs: From production to clinical applications // Pharmaceutics. 2019. V. 11. № 8. P. 360. https://doi.org/10.3390/pharmaceutics11080360
  25. Monteiro L.F., Malachias Â., Poundlana G. et al. Paclitaxel-loaded pH-sensitive liposome: New insights on structural and physicochemical characterization // Langmuir. 2018. V. 34. P. 5728–5737. https://doi.org/10.1021/acs.langmuir.8b00411
  26. Tokudome Y., Nakamura K., Itaya Y. et al. Enhancement of skin penetration of hydrophilic and lipophilic compounds by pH-sensitive liposomes // Journal of Pharmacy and Pharmaceutical Sciences. 2015. V. 18. P. 249–257. https://doi.org/10.18433/J3H89S
  27. Awad N.S., Paul V., AlSawaftah N.M. et al. Ultrasound-responsive nanocarriers in cancer treatment: A review // ACS Pharmacology & Translational Science. 2021. V. 4. № 2. P. 589–612. https://doi.org/10.1021/acsptsci.0c00212
  28. Yan W., Leung S.S., To K.K.W. Updates on the use of liposomes for active tumor targeting in cancer therapy // Nanomedicine. 2020. V. 15. P. 303–318. https://doi.org/10.2217/nnm-2019-0308
  29. Nikolova M.P., Kumar E.M., Chavali M.S. Updates on responsive drug delivery based on liposome vehicles for cancer treatment // Pharmaceutics. 2020. V. 14. P. 2195. https://doi.org/10.3390/pharmaceutics14102195
  30. Yatvin M.B., Weinstein J.N., Dennis W.H. Design of liposomes for enhanced local release of drugs by hyperthermia // Science, New Series. 1978. V. 202. № 4374. P. 1290–1293. https://doi.org/10.1126/science.364652
  31. Kong G., Dewhirst M.W. Review hyperthermia and liposomes // International Journal of Hyperthermia. 1999. V. 15. № 5. P. 345–370. https://doi.org/10.1080/026567399285558
  32. Evans E., Needham D. Physical properties of surfactant bilayer membranes: Thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions // J. Phys. Chem. 1987. V. 91. P. 4219–4228.
  33. Trosheva K.S., Sorokina S.A., Efimova A.A. et al. Interaction of multicomponent anionic liposomes with cationic pyridylphenylene dendrimer: Does the complex behavior depend on the liposome composition? // Biochimica et Biophysica Acta (BBA) – Biomembranes. 2021. V. 1863. № 12. P. 183761. https://doi.org/10.1016/j.bbamem.2021.183761
  34. Efimova A.A., Abramova T.A., Popov A.S., Grokhovskaya T.E. Interaction of chitosan with anionic liquid liposomes: Reversibility of structural rearrangements in lipid bilayer // Russian Journal of General Chemistry. 2022. V. 92. № 11. P. 2429–2435. https://doi.org/10.1134/S1070363222110275
  35. Антонов В.Ф. Эволюция липидных пор в бислое при фазовом переходе мембранных липидов // Регулярная и хаотическая динамика / Под ред. А.Б. Рубина. М., 2006.
  36. Dluhy R.A., Chowdhry B.Z., Cameron D.G. Infrared characterization of conformational differences in the lamellar phases of 1,3-dipalmitoyl-sn-glycero-2-phosphocholine // Biochimica et Biophysica Acta (BBA) – Biomembranes. 1985. V. 821. № 3. P. 437–444. https://doi.org/10.1016/0005-2736(85)90048-3
  37. Watts A., Spooner P.J.R. Phospholipid phase transitions as revealed by NMR // Chem. Phys. Lipids. 1991. V. 57. № 2–3. P. 195–211. https://doi.org/10.1016/0009-3084(91)90076-n
  38. Bozzuto G., Molinari A. Liposomes as nanomedical devices // International Journal of Nanomedicine. 2015. V. 10. P. 975–999. https://doi.org/10.2147/IJN.S68861
  39. Needham D., Anyarambhatla G., Kong G., Dewhirst M.W. A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model // Cancer Res. 2000. V. 60. № 5. P. 1197–1201.
  40. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery // Adv. Drug. Deliv. Rev. 2006. V. 58. № 15. P.1655–1670. https://doi.org/10.1016/j.addr.2006.09.020
  41. Chernikova E.V., Plutalova A.V., Mineeva K.O. et al. Ternary copolymers of acrylic acid, n-isopropylacrylamide, and butyl acrylate: Synthesis and aggregative behavior in dilute solutions // Polymer Science, Series B. 2016. V. 58. № 5. P. 564–573. https://doi.org/10.1134/S1560090416050031
  42. MacKinnon N., Guérin G., Liu B., Gradinaru C.C., Rubinstein L., Macdonald P.M. Triggered instability of liposomes bound to hydrophobically modified core-shell PNIPAM hydrogel beads // Langmuir. 2010. V. 26. № 2. P. 1081–1089. https://doi.org/10.1021/la902423v
  43. Yaroslavov A., Panova I., Sybachin A. et al. Payload release by liposome burst: Thermal collapse of microgels induces satellite destruction // Nanomedicine. 2017. V. 13. № 4. P. 1491–1494. https://doi.org/10.1016/j.nano.2017.02.001
  44. Alvarez-Lorenzo C., Bromberg L., Concheiro A. Light-sensitive intelligent drug delivery systems // Photochemistry and Photobiology. 2009. V. 85. № 4. P. 848–860. https://doi.org/10.1111/j.1751-1097.2008.00530.x
  45. Ericson M.B., Wennberg A.M., Larko O. Review of photodynamic therapy in actinic keratosis and basal cell carcinoma // Ther. Clin. Risk Manag. 2008. V. 4. P. 1–9. https://doi.org/10.2147/TCRM.S1769
  46. Konan Y.N., Gurny R., Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy // J. Photochem. Photobiol. B. 2002. V. 66. P. 89–106. https://doi.org/10.1016/s1011-1344(01)00267-6
  47. Wang J.-Y., Wu Q.-F., Li J.-P. et al. Photo-sensitive liposomes: Chemistry and application in drug delivery // Mini-Reviews in Medicinal Chemistry. 2010. V. 10. № 2. P. 172–181. https://doi.org/10.2174/138955710791185091
  48. Pan P., Svirskis D., Rees S. W.P. et al. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications // Journal of Controlled Release. 2021. V. 338. P. 446–461. https://doi.org/10.1016/j.jconrel.2021.08.053
  49. Bisby R.H., Mead C., Morgan C.G. Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochemistry and Photobiology. 2000. V. 72. № 1. P. 57–61. https://doi.org/10.1562/0031-8655(2000)0720049mscpob2.0.co2
  50. Ghosh S., Carter K.A., Lovell J.F. Liposomal formulations of photosensitizers // Biomaterials. 2019. V. 218. P. 119341. https://doi.org/10.1016/j.biomaterials.2019.119341
  51. Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery // Nat. Rev. Drug Discov. 2014. V. 13. P. 813–827. https://doi.org/10.1038/nrd4333
  52. Liu M., Du H., Zhang W., Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications // Mater. Sci. Eng. C. 2017. V. 71. P. 1267–1280. https://doi.org/10.1016/j.msec.2016.11.030
  53. Noyhouzer T., L’Homme C., Beaulieu I. et al. Ferrocene-modified phospholipid: An innovative precursor for redox-triggered drug delivery vesicles selective to cancer cells // Langmuir. 2016. V. 32. P. 4169–4178. https://doi.org/10.1021/acs.langmuir.6b00511
  54. Wang T., He W., Du Y., Wang J., Li X. Redox-sensitive irinotecan liposomes with active ultra-high loading and enhanced intracellular drug release // Colloids Surf. B. Biointerfaces. 2021. V. 206. P. 111967. https://doi.org/10.1016/j.colsurfb.2021.111967
  55. Ong W., Yang Y., Cruciano A.C., McCarley R.L. Redox-triggered contents release from liposomes // J. Am. Chem. Soc. 2008. V. 130. P. 14739–14744. https://doi.org/10.1021/ja8050469
  56. Mirhadi E., Mashreghi M., Askarizadeh A. et al. Redox-sensitive doxorubicin liposome: A formulation approach for targeted tumor therapy // Sci. Rep. 2022. V. 12. P. 11310. https://doi.org/10.1038/s41598-022-15239-x
  57. Yin T., Liu Y., Yang M. et al. Novel chitosan derivatives with reversible cationization and hydrophobicization for tumor cytoplasm-specific burst co-delivery of siRNA and chemotherapeutics // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 14770–14783. https://doi.org/10.1021/acsami.9b19373
  58. Mahmoudzadeh M., Magarkar A., Koivuniemi A., Róg T., Bunker A. Mechanistic insight into how PEGylation reduces the efficacy of pH-sensitive liposomes from molecular dynamics simulations // Molecular pharmaceutics. 2021. V. 18. № 7. P. 2612–2621. https://doi.org/10.1021/acs.molpharmaceut.1c00122
  59. Lee E.S., Oh K.T., Kim D., Youn Y.S., Bae Y.H. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine) // J. Control. Release 2007. V. 123. P. 19–26. https://doi.org/10.1016/j.jconrel.2007.08.006
  60. Efimova A.A., Sybachin A.V., Yaroslavov A.A. Effect of anionic-lipid-molecule geometry on the structure and properties of liposome-polycation complexes // Polymer Science Series C. 2011. V. 53. № 1. P. 18. https://doi.org/10.1134/S1811238211040011
  61. Ferreira D.S., Lopes S.C. de A., Franco M.S., Oliveira M.C. pH-sensitive liposomes for drug delivery in cancer treatment // Therapeutic Delivery. 2013. V. 4. № 9. P. 1099–1123. https://doi.org/10.4155/tde.13.80
  62. Li W., Nicol F., Szoka F.C. A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery // Adv. Drug Deliv. Rev. 2004. V. 56. № 7. P. 967–985. https://doi.org/10.1016/j.addr.2003.10.041
  63. Zhao Y., Ren W., Zhong T. et al., Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity // J. Control. Release. 2016. V. 222. P. 56. https://doi.org/10.1016/j.jconrel.2015.12.006
  64. Miyazaki M., Yuba E., Hayashi H. et al. Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems // Bioconjug. Chem. 2018. V. 29. P. 44. https://doi.org/10.1021/acs.bioconjchem.7b00551
  65. Samoshina N.M., Liu X., Brazdova B. et al. Fliposomes: pH-sensitive liposomes containing a trans-2-morpholinocyclohexanol-based lipid that performs a conformational flip and triggers an instant cargo release in acidic medium // Pharmaceutics. 2011. V. 3. № 3. P. 379–405. https://doi.org/10.3390/pharmaceutics3030379
  66. Liu X., Zheng Y., Samoshina N.M. et al. Fliposomes: pH-triggered conformational flip of new trans-2-aminocyclohexanol-based amphiphiles causes instant cargo release in liposomes // J. Liposome Res. 2012. V. 22. № 4. P. 319–328. https://doi.org/10.3109/08982104.2012.698420
  67. Zheng Y., Liu X., Samoshina N.M. et al. Fliposomes: trans-2-aminocyclohexanol-based amphiphiles as pH-sensitive conformational switches of liposome membrane – a structure-activity relationship study // Chem. Phys. Lipids. 2018. V. 210. P. 129–141. https://doi.org/10.1016/j.chemphyslip.2017.10.004
  68. Zaborova O.V., Timoshenko V.A., Nardin C. et al. New insights on the release and self-healing model of stimuli-sensitive liposomes // J. Colloid Interface Sci. 2023. V. 640. P. 558–567. https://doi.org/10.1016/j.jcis.2023.02.099
  69. Veremeeva P.N., Grishina I.V., Lapteva V.L. et al. pH-Sensitive liposomes with embedded 3,7-diazabicyclo[3.3.1]nonane derivative // Mendel. Commun. 2014. V. 3. № 24. P. 152–153. https://doi.org/10.1016/j.mencom.2014.04.008
  70. Veremeeva P.N., Lapteva V.L., Palyulin V.A. et al. Bispidinone-based molecular switches for construction of stimulus-sensitive liposomal containers // Tetrahedron. 2014. V. 70. № 7. P. 1408–1411. https://doi.org/10.1016/j.tet.2014.01.012
  71. Yaroslavov A., Efimova A., Smirnova N. et al. A novel approach to a controlled opening of liposomes // Colloids Surf. B: Biointerfaces. 2020. V. 190. P. 110906. https://doi.org/10.1016/j.colsurfb.2020.110906
  72. Efimova A.A., Popov A.S., Kazantsev A.V. et al pH-Sensitive liposomes with embedded 3-(isobutylamino)cholan-24-oic acid: What is the possible mechanism of fast cargo release? // Membranes. 2023. V. 13. № 4. P. 407. https://doi.org/10.3390/membranes13040407
  73. Popov A.S., Efimova A.A., Kazantsev A.V. et al. pH-Sensitive liposomes with embedded ampholytic derivatives of cholan-24-oic acid // Mendel. Commun. 2021. V. 31. № 6. P. 827–829. https://doi.org/10.1016/j.mencom.2021.11.019
  74. Yaroslavov A.A., Efimova A.A., Abramova T.A. et al. Multi-compartment containers from a mixture of natural and synthetic lipids // Mend. Commun. 2023. V. 33. № 2. P. 221–224. https://doi.org/10.1016/j.mencom.2023.02.023
  75. Grozdova I., Melik-Nubarov N., Efimova A. et al. Intracellular delivery of drugs by chitosan-based multi-liposomal complexes // Colloids Surf. B: Biointerfaces. 2020. V. 193. P. 11062. https://doi.org/10.1016/j.colsurfb.2020.111062
  76. Abri Aghdam M., Bagheri R., Mosafer J. et al. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release // J. Control Release. 2019. V. 315. P. 1–22. https://doi.org/10.1016/j.jconrel.2019.09.018
  77. Paliwal S.R., Paliwal R., Vyas S.P. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery // Drug Deliv. 2015. V. 22. № 3. P. 231–242. https://doi.org/10.3109/10717544.2014.882469
  78. Nandi U., Onyesom I., Douroumis D. An in vitro evaluation of antitumor activity of sirolimus-encapsulated liposomes in breast cancer cells // J. Pharm. Pharmacol. 2021. V. 73. № 3. P. 300–309. https://doi.org/10.1093/jpp/rgaa061
  79. El Knidri H., Dahmani J., Addaou A. et al. Rapid and efficient extraction of chitin and chitosan for scale-up production: Effect of process parameters on deacetylation degree and molecular weight // Int. J. Biol. Macromol. 2019 V. 139. P. 1092–1102. https://doi.org/10.1016/j.ijbiomac.2019.08.079
  80. Sawant R.M., Hurley J.P., Salmaso S., et al. “SMART” drug delivery systems: Double-targeted pH-responsive pharmaceutical nanocarriers // Bioconjug. Chem. 2006. V. 17. № 4. P. 943–949. https://doi.org/10.1021/bc060080h
  81. Zong W., Hu Y., Su Y. et al. Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers // J. Microencapsul. 2016. V. 33. № 3. P. 257–262. https://doi.org/10.3109/02652048.2016.1156176
  82. Sandler S.E., Fellows B., Mefford O.T. Best practices for characterization of magnetic nanoparticles for biomedical applications // Anal. Chem. 2019. V. 91. № 22. P. 14159–14169. https://doi.org/10.1021/acs.analchem.9b03518
  83. Hadinoto K., Sundaresan, Cheow W.S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review // Eur. J. Pharm. Biopharm. 2013. V. 85. № 23. P. 427–443. https://doi.org/10.1016/j.ejpb.2013.07.002
  84. Fathy M.M., Fahmy H.M., Balah A.M.M. et al. Magnetic nanoparticles-loaded liposomes as a novel treatment agent for iron deficiency anemia: In vivo study // Life Sci. 2019. V. 234. P. 116787. https://doi.org/10.1016/j.lfs.2019.116787
  85. Dormer K., Seeney C., Lewelling K. et al. Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field // Biomaterials. 2005. V. 26. № 14. P. 2061–2072. https://doi.org/10.1016/j.biomaterials.2004.06.040
  86. Li X., Li W., Wang M., Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects // J. Control. Release. 2021. V. 335. P. 437–448. https://doi.org/10.1016/j.jconrel.2021.05.042
  87. Ansari M.J., Kadhim M.M., Hussein B.A. et al. Synthesis and stability of magnetic nanoparticles // BioNa-noSci. 2022. V. 12. № 2. P. 627–638. https://doi.org/10.1007/s12668-022-00947-5
  88. Lyer S., Singh R., Tietze R. et al. Magnetic nanoparticles for magnetic drug targeting // Biomed. Tech. 2015. V. 60. № 5. P. 465–475. https://doi.org/10.1515/bmt-2015-0049
  89. Mireles L.K., Sacher E., Yahia L. et al. A comparative physicochemical, morphological and magnetic study of silane-functionalized superparamagnetic iron oxide nanoparticles prepared by alkaline coprecipitation // Int. J. Biochem. Cell. Biol. 2016. V. 75. P. 203–211. https://doi.org/10.1016/j.biocel.2015.12.002
  90. Lassenberger A., Grünewald T.A., van Oostrum P.D.J., et al. Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering // Chem. Mater. 2017. V. 29. № 10. P. 4511–4522. https://doi.org/10.1021/acs.chemmater.7b01207
  91. Israel L.L., Galstyan A., Holler E., Ljubimova J.Y. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain // J. Control. Release. 2020. V. 320. P. 45–62. https://doi.org/10.1016/j.jconrel.2020.01.009
  92. Vernaya O.I., Shumilkin A.S., Shabatin V.P. et al. The synthesis of maghemite nanoparticles by thermal decomposition of cryochemically modified iron (III) acetylacetonate // Mos. Univ. Chem. Bull. 2020. V. 75. P. 265–268. https://doi.org/10.3103/S0027131420050089
  93. Pigareva V.A., Alekhina Y.A. Grozdova I.D. et al. Magneto-sensitive and enzymatic hydrolysis-resistant systems for the targeted delivery of paclitaxel based on polylactide micelles with an external polyethylene oxide corona // Polym. Int. 2021. V. 71. № 4. P. 456–463. https://doi.org/10.1002/pi.6306
  94. Abdollah M.R., Kalber T., Tolner B. et al. Prolonging the circulatory retention of SPIONs using dextran sulfate: In vivo tracking achieved by functionalisation with near-infrared dyes // Faraday Discuss. V. 2014. V. 175. P. 41–58. https://doi.org/10.1039/c4fd00114a
  95. Saravanakumar K., Sathiyaseelan A., Manivasagan P. et al. Photothermally responsive chitosan-coated iron oxide nanoparticles for enhanced eradication of bacterial biofilms // Biomater. Adv. 2022. V. 141. P. 213129. https://doi.org/10.1016/j.bioadv.2022.213129
  96. Ramnandan D., Mokhosi S., Daniels A. et al. Chitosan, polyethylene glycol and polyvinyl alcohol modified MgFe2O4 ferrite magnetic nanoparticles in doxorubicin delivery: A comparative study in vitro // Molecules. 2021. V. 26. № 13. P. 3893. https://doi.org/10.3390/molecules26133893
  97. Rajan A., Sharma M., Sahu N.K. Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia // Sci. Rep. 2020. V. 10. № 1. P. 15045. https://doi.org/10.1038/s41598-020-71703-6
  98. Wang X., Wang Y., Xue Z. et al. Magnetic liposome as a dual-targeting delivery system for idiopathic pulmonary fibrosis treatment // J. Colloid Interface Sci. 2023. V. 636. P. 388–400. https://doi.org/10.1016/j.jcis.2023.01.007
  99. Halevas E., Mavroidi B., Swanson C.H. et al. Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential // J. Inorg. Biochem. 2019. V. 199. P. 110778. https://doi.org/10.1016/j.jinorgbio.2019.110778
  100. Soares F.A., Costa P., Sousa C.T. et al. Rational design of magnetoliposomes for enhanced interaction with bacterial membrane models // Biochim. Biophys. Acta Biomembr. 2023. V. 1865. P. 184115. https://doi.org/10.1016/j.bbamem.2022.184115
  101. Monnier C.A., Burnand D., Rothen-Rutishauser B. et al. Magnetoliposomes: Opportunities and challenges // Eur. J. Nanomed. 2014. V. 6. № 4. P. 201–215. https://doi.org/10.1515/ejnm-2014-0042
  102. Floris A., Ardu A., Musinu A., et al. SPION@ liposomes hybrid nanoarchitectures with high density SPION association // Soft Matter. 2011. V. 7. № 13. P. 6239–6247. https://doi.org/10.1039/C1SM05059A
  103. Amstad E., Kohlbrecher J., Muller E. et al. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes // Nano Lett. 2011. V. 11. № 4. P. 1664–1670. https://doi.org/10.1021/nl2001499
  104. Choi W.I., Sahu A., Wurm F.R. et al. Magnetoliposomes with size controllable insertion of magnetic nanoparticles for efficient targeting of cancer cells // RSC Adv. 2019. V. 9. № 26. P. 15053–15060. https://doi.org/10.1039/c9ra02529d
  105. Hermann C.A., Hofmann C., Duerkop A. et al. Magnetosomes for bioassays by merging fluorescent liposomes and magnetic nanoparticles: Encapsulation and bilayer insertion strategies // Anal. Bioanal. Chem. 2020. V. 412. P. 6295–6305. https://doi.org/10.1007/s00216-020-02503-0
  106. Pradhan P., Banerjee R., Bahadur D., Koch C., Mykhaylyk, O., Plank C. Targeted magnetic liposomes loaded with doxorubicin. In: D’Souza, G. (eds) Liposomes. Methods in Molecular Biology. V. 1522. Humana Press. New York. NY. 2017.
  107. Thomsen L.B., Linemann T., Birkelund S. et al. Evaluation of targeted delivery to the brain using magnetic immunoliposomes and magnetic force // Materials. 2019. V. 31. № 21. P. 3576. https://doi.org/10.3390/ma12213576
  108. Gao W., Wei S., Li Z. et al. Nano magnetic liposomes-encapsulated parthenolide and glucose oxidase for ultra-efficient synergistic antitumor therapy // Nanotechnology. 2020. V. 31. P. 355104. https://doi.org/10.1088/1361-6528/ab92c8
  109. Yang R., An L.Y., Miao Q.F. et al. Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes // Oncotarget. 2016. V. 7. № 24. P. 35894. https://doi.org/10.18632/oncotarget.9116
  110. Thébault C.J., Ramniceanu G., Michel A. et al. In vivo evaluation of magnetic targeting in mice colon tumors with ultra-magnetic liposomes monitored by MRI // Mol. Imaging. Biol. 2019. V. 21. P. 269–278. https://doi.org/10.1007/s11307-018-1238-3
  111. Ma G., Kostevšek N., Monaco I. et al. PD1 blockade potentiates the therapeutic efficacy of photothermally-activated and MRI-guided low temperature-sensitive magnetoliposomes // J. Control Release. 2021. V. 332. P. 419–433. https://doi.org/10.1016/j.jconrel.2021.03.002
  112. Luiz M.T., Dutra J.A.P., Viegas J.S.R. et al. Hybrid magnetic lipid-based nanoparticles for cancer therapy // Pharmaceutics. 2023. V. 15. № 23. P. 751. https://doi.org/10.3390/pharmaceutics15030751
  113. Gogoi M., Jaiswal M.K., Sarma H.D. et al. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy // Integr. Biol. 2017 V. 9. № 6. P. 555–565. https://doi.org/10.1039/c6ib00234j
  114. Farzin A., Etesami S.A., Quint J. et al. Magnetic nanoparticles in cancer therapy and diagnosis // Adv. Healthc. Mater. 2020. V. 9. № 9. P. 1901058. https://doi.org/10.1002/adhm.201901058
  115. Alonso J., Khurshid H., Devkota J. et al. Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection // J. Appl. Phys. 2016. V. 119. P. 083904. https://doi.org/10.1063/1.4942618
  116. Oliveira R.R., Carrião M.S., Pacheco M.T. et al. Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia // Mater. Sci. Eng. C. 2018. V. 92. P. 547–553. https://doi.org/10.1016/j.msec.2018.07.011
  117. Cardoso B.D., Rodrigues A.R.O., Bañobre-López M. et al. Magnetoliposomes based on shape anisotropic calcium/magnesium ferrite nanoparticles as nanocarriers for doxorubicin // Pharmaceutics. 2021. V. 13. № 8. P. 1248. https://doi.org/10.3390/pharmaceutics13081248
  118. Fortes Brollo M.E., Domínguez-Bajo A., Tabero A. et al. Combined magnetoliposome formation and drug loading in one step for efficient alternating current-magnetic field remote-controlled drug release // ACS Appl. Mater. Interfaces. 2020. V. 12. № 4. P. 4295–4307. https://doi.org/10.1021/acsami.9b20603
  119. Khomutov G.B., Kim V.P., Koksharov Y.A. et al. Nanocomposite biomimetic vesicles based on interfacial complexes of polyelectrolytes and colloid magnetic nanoparticles // Colloid. Surf. A. 2017. V. 532. P. 26–35. https://doi.org/10.1016/j.colsurfa.2017.07.035
  120. Gulyaev Y.V., Cherepenin V.A., Taranov I.V. et al. Activation of nanocomposite liposomal capsules in a conductive water medium by ultra-short electric exposure // J. Commun. Technol. Electr. 2021. V. 66. P. 88–95. https://doi.org/10.1134/S1064226921010022
  121. Trilli J., Caramazza L., Paolicelli P. et al. The impact of bilayer rigidity on the release from magnetoliposomes vesicles controlled by PEMFs // Pharmaceutics. 2021. V. 13. № 10. P. 1712. https://doi.org/10.3390/pharmaceutics13101712
  122. Dwivedi P., kiran S., Han S. et al. Magnetic targeting and ultrasound activation of liposome-microbubble conjugate for enhanced delivery of anticancer therapies // ACS Appl. Mater. Interfaces 2020. V. 12. № 21. P. 23737–23751. https://doi.org/10.1021/acsami.0c05308
  123. Sybachin A.V., Khlynina P.O., Spiridonov V.V. et al. Amino-terminated polylactide micelles with an external poly(ethylene oxide) corona as carriers of drug-loaded anionic liposomes // Polym. Int. 2018. V. 67. № 10. P. 1352–1358. https://doi.org/10.1002/pi.5629
  124. Shete M.B., Patil T.S., Deshpande A. et al. Current trends in theranostic nanomedicines // J. Drug Delivery Sci. Tech. 2022. V. 71. P. 103280. https://doi.org/10.1016/j.jddst.2022.103280
  125. Skupin-Mrugalska P., Sobotta L., Warowicka A. et al. Theranostic liposomes as a bimodal carrier for magnetic resonance imaging contrast agent and photosensitizer // J. Inorg. Biochem. 2018. V. 180. P. 1–14. https://doi.org/10.1016/j.jinorgbio.2017.11.025
  126. Li J., Li Q., He M. et al. AS1411 aptamer-modified theranostic liposomes co-encapsulating manganese oxide nano-contrast agent and paclitaxel for MRI and therapy of cancer // RSC Adv. 2019. V. 9. № 60. P. 34837–34846. https://doi.org/10.1039/c9ra06878c
  127. Šimečková P., Hubatka F., Kotouček J. et al. Gadolinium labelled nanoliposomes as the platform for MRI theranostics: In vitro safety study in liver cells and macrophages // Sci. Rep. 2020. V. 10. № 1. P. 4780. https://doi.org/10.1038/s41598-020-60284-z
  128. Chen Q., Shang W., Zeng C., et al. Theranostic imaging of liver cancer using targeted optical/MRI dual-modal probes // Oncotarget. 2017. V. 8. № 20. P. 32741. https://doi.org/10.18632/oncotarget.15642
  129. Thébault C.J., Ramniceanu G., Boumati S. et al. Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P // J. Control. Release. 2020. V. 322. P. 137–148. https://doi.org/10.1016/j.jconrel.2020.03.003
  130. Guo H., Chen W., Sun X. et al. Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field // Carbohydr. Polym. 2015. V. 118. P. 209–217. https://doi.org/10.1016/j.carbpol.2014.10.076

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (164KB)
3.

Download (347KB)
4.

Download (465KB)
5.

Download (517KB)
6.

Download (507KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies