Increasing the Resistance of Wheat to Oil Pollution Using Endophytic Bacteria Bacillus subtilis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of treatment of wheat seeds with a suspension culture of cells of endophytic bacteria of the strain Bacillus subtilis 26D and lines B. subtilis 26D+n, selected for tolerance to crude oil components, on the growth and biochemical characteristics of wheat plants Triticum aestivum L. in conditions of oil pollution of the soil was studied. It has been shown that seed inoculation with the line B. subtilis 26D+n stimulated the growth of seedlings and suppressed the development of oxidative stress under conditions of exposure to oil pollution in plants in comparison with the control and plants inoculated with the strain B. subtilis 26D. Accordingly, bacteria B. subtilis 26D+n contributed to more successful growth of wheat plants on oil-contaminated soils, which can be used to stimulate the growth of plants in such areas and to return some of them to economic circulation.

About the authors

Z. M. Kuramshina

Sterlitamak branch of the Ufa University of Science and Technology

Email: kuramshina_zilya@mail.ru
Sterlitamak, Russia

L. R. Sattarova

Sterlitamak branch of the Ufa University of Science and Technology

Email: kuramshina_zilya@mail.ru
Sterlitamak, Russia

I. V. Maksimov

Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: kuramshina_zilya@mail.ru
Ufa, Russia

References

  1. Odukoya J., Lambert R., Sakrabani R. Understanding the impacts of crude oil and its induced abiotic stresses on agrifood production: A review // Horticulturae. 2019. V. 5. Art. 47. https://doi.org/10.3390/horticulturae5020047
  2. Alotaibi F., St-Arnaud M., Hijri M. In-depth characterization of plant growth promotion potentials of selected alkanes-degrading plant growth-promoting bacterial isolates // Front. Microbiol. 2022. V. 13. Art. 863702. https://doi.org/10.3389/fmicb.2022.863702
  3. Kanwal M., Ullah H., Gulzar A., Sadiq T., Gul Z., Ullah M., Sarfraz M., Aslam M.A., Khan N.N., Batool T., Maqsood S., Nawaz A. Biodegradation of petroleum hydrocarbons and the factors effecting rate of biodegradation // Am. J. Biomed. Sci. Res. 2022. V. 16. P. 6 https://doi.org/10.34297/ajbsr.2022.16.002182
  4. Da Silva Correa H., Blum C.T., Galvão F., Maraho L.T. Effects of oil contamination on plant growth and development: a review // Environ. Sci Pollut. Res. 2022. V. 29. P. 43501. https://doi.org/10.1007/s11356-022-19939-9
  5. Arellano P., Tansey K., Balzter H., Tellkamp M. Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the amazon rainforest of Ecuador // PLoS ONE. 2017. V. 12. Art. e0169867. https://doi.org/10.1371/journal.pone.0169867
  6. Lumactud R., Shen S.Y., Lau M., Fulthorpe R. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination / Front. Microbiol. 2016. V. 7. Art. 755. https://doi.org/10.3389/fmicb.2016.00755
  7. Pawlik M., Płociniczak T., Thijs S., Pintelon I., Vangronsveld J., Piotrowska-Seget Z. Comparison of two inoculation methods of endophytic bacteria to enhance phytodegradation efficacy of an aged petroleum hydrocarbons polluted soil // Agronomy. 2020. V. 10. Art. 1196. https://doi.org/10.3390/agronomy10081196
  8. Hwang H.-H., Chien P.-R., Huang F.-C., Yeh P.-H., Hung S.-H.W., Deng W.-L., Huang C.-C. A plant endophytic bacterium Priestia megaterium StrainBP-R2 isolated from the halophyte Bolboschoenus planiculmis enhances plant growth under salt and drought stresses // Microorganisms. 2022. V. 10. Art. 2047. https://doi.org/10.3390/ microorganisms10102047
  9. Ha-Tran D.M., Nguyen T.T.M., Hung S.H., Huang E., Huang C.C. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review // Int. J. Mol. Sci. 2021. V. 2. Art. 3154. https://doi.org/10.3390/ ijms22063154
  10. Mohammadipanah F., Zamanzadeh M. Bacterial mechanisms promoting the tolerance to drought stress in plants // Secondary metabolites of plant growth promoting rhizomicroorganisms / Eds. H. Singh et al. Springer: Singapore. 2019. P. 185. https://doi.org/10.1007/978-981-13-5862-3_10
  11. Fadiji A.E., Babalola O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects // Front. Bioeng. Biotechnol. 2020. V. 8. Art. 467. https://doi.org/10.3389/fbioe.2020.00467
  12. Захарченко М.В., Люшин М.М., Мустафина Э.А. Соединения металлов в нефтях месторождений Оренбуржья // Нефтегазохимия. 2016. Т. 1. С. 61.
  13. Практикум по микробиологии / Под ред. А.И. Нетрусова. М.: Академия, 2005. 608 с.
  14. Veselova S.V., Burkhanova G.F., Nuzhnaya T.V., Maksimov I.V. Roles of ethylene and cytokinins in development of defense responses in Triticum aestivum plants infected with Septoria nodorum // Russ. J. Plant Physiol. 2016. V. 63. P. 609. https://doi.org/10.1134/S1021443716050150
  15. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248. https://doi.org/10.1016/0003-2697(76)90527-3
  16. Costa H., Gallego S.M., Tomaro M.L. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons // Plant Sci. 2002. V. 162. P. 939.
  17. Шихалеева Г.Н., Будняк А.К., Шихалеев И.И., Иващенко О.Л. Модифицированная методика определения пролина в растительных объектах // Вісник Харківського національного університету ім. В.Н. Каразіна. Серія: біологія. 2014. Т. 21. С. 168.
  18. Курамшина З.М., Хайруллин Р.М., Смирнова Ю.В. Сортовая отзывчивость Тriticum aestivum L. на инокуляцию клетками эндофитных штаммов Вacillus subtilis // Российская сельскохозяйственная наука. 2019. Т. 6. С. 3. https://doi.org/10.31857/S2500-2627201963-6
  19. Kuramshina Z.M., Khairullin R.M. Endophytic strains of Bacillus subtilis promote drought resistance of plants // Russ. J. Plant Physiol. 2023. V. 70 (45). P. 259. https://doi.org/10.1134/S1021443722603172
  20. Kuramshina Z.M., Khairullin R.M. Improving salt stress tolerance of Triticum aestivum L. with endophytic strains of Bacillus subtilis // Russ. J. Plant Physiol. 2023. V. 70 (53). P. 293. https://doi.org/10.1134/S1021443722603068
  21. Ziółkowska A., Wyszkowski M. Toxicity of petroleum substances to microorganisms and plants // Ecol. Chem. Eng. S. 2010. V. 17. P. 73.
  22. da Silva Correa H., Blum C.T., Galvão F., Maranho L.T. Effects of oil contamination on plant growth and development: a review // Environ. Sci. Pollut. Res. 2022. V. 29. Art. 43501. https://doi.org/10.1007/s11356-022-19939-9
  23. Hidalgo K.J., Sierra-Garcia I.N., Dellagnezze B.M., de Oliveira V.M. Metagenomic insights into the mechanisms for biodegradation of polycyclic aromatic hydrocarbons in the oil supply chain // Front. Microbiol. 2020. V. 11 Art. 561506. https://doi.org/10.3389/fmicb.2020.561506
  24. Pawlik M., Cania B., Thijs S., Vangronsveld J., Piotrowska-Seget Z. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site // Environ. Sci. Pollut. Res. 2017. V. 24. P. 19640. https://doi.org/10.1007/s11356-017-9496-1
  25. Antoszewski M., Mierek-Adamska A., Dąbrowska G.B. The Importance of microorganisms for sustainable agriculture-a review // Metabolites. 2022. V. 12. Art. 1100. https://doi.org/10.3390/metabo12111100
  26. Mitter E. R.K., Kataoka R., de Freitas J. R., Germida J.J. Potential use of endophytic root bacteria and host plants to degrade hydrocarbons // Int. J. Phytoremediation. 2019. V. 21. Art. 9. https://doi.org/10.1080/15226514.2019.1583637
  27. Liu Y., Morelli M., Koskimäki J.J., Qin S., Zhu Y.-H., Zhang X.X. Editorial: Role of endophytic bacteria in improving plant stress resistance // Front. Plant Sci. 2022. V. 13. Art. 1106701. https://doi.org/10.3389/fpls.2022.1106701
  28. Gkorezis P., Daghio M., Franzetti A., Van Hamme J.D., Sillen W., Vangronsveld J. The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective // Front. Microbiol. 2016. V. 7. Art. 1836. https://doi.org/10.3389/fmicb.2016.01836
  29. Kuramshina Z.M., Smirnova Y.V., Khairullin R.M. Increasing Triticum aestivum tolerance to cadmium stress through endophytic strains of Bacillus subtilis // Russ. J. Plant. Physiol. 2016. V. 63. P. 636. https://doi.org/10.1134/S1021443716050083
  30. Marchut‑Mikolajczyk O., Drożdżyński P., Pietrzyk1 D., Antczak T. Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L. // Microb. Cell Fact. 2018. V. 17. Art. 171. https://doi.org/10.1186/s12934-018-1017-5
  31. Peele A., Vekateswarulu T.C. Tammineedi J., Kanumuri L. Ravuru B.K., Dirisala V.R., Kodali V.P. Role of biosurfactants in bioremediation of oil pollution - a review // Petroleum. 2018. V. 4. P. 241.
  32. Черепанова Е.А., Галяутдинов И.В., Бурханова Г.Ф., Максимов И.В. Выделение и идентификация липопептидов штамма Bacillus subtilis 26Д // Прикладная биохимия и микробиология. 2021. Т. 57. С. 496. https://doi.org/10.31857/S0555109921050032
  33. Maksimov I.V., Singh B.P., Cherepanova E.A. Burkhanova G.F., Khairullin R.M. Prospects and applications of lipopeptide-producing bacteria for plant protection (Review) // Appl. Biochem. Microbiol. 2020. V. 56. P. 15. https://doi.org/10.1134/S0003683820010135
  34. Sorokan A., Veselova S., Benkovskaya G., Maksimov I. Endophytic strain Bacillus subtilis 26D increases levels of phytohormones and repairs growth of potato plants after colorado potato beetle damage // Plants. 2021. V. 10. Art. 923. https://doi.org/10.3390/plants10050923
  35. Нафикова А.Р., Сурина О.Б., Хайруллин Р.М., Максимов И.В. Влияние метаболитов штаммов 26Д и 11ВМ бактерии Bacillus subtilis на рост проростков и каллусов пшеницы // Агрохимия. 2018. Т. 5. С. 39. https://doi.org/10.7868/s000218811805006x
  36. Le Mire G., Siah A., Brisset M.-N., Gaucher M., Deleu M., Jijakli M.H. Surfactin protects wheat against Zymoseptoria tritici and activates both salicylic acid- and jasmonic acid-dependent defense responses // Agriculture. 2018. V. 8. Art. 11. https://doi.org/10.3390/agriculture8010011
  37. Pršic J., Ongena M. Elicitors of plant immunity triggered by beneficial bacteria // Front. Plant Sci. 2022. V. 11. Art. 594530. https://doi.org/10.3389/fpls.2020.594530

Copyright (c) 2023 З.М. Курамшина, Л.Р. Саттарова, И.В. Максимов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies