Skip to main content
Log in

Improving Salt Stress Tolerance of Triticum aestivum L. with Endophytic Strains of Bacillus subtilis

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effect of salt stress on Triticum aestivum L. plants inoculated with endophytic strains of B. subtilis was studied. The treatment of Triticum aestivum L. with endophytic bacterial strains of B. subtilis was shown to increase plant resistance to the stress factor. The inoculation reduced the development of oxidative stress and the entry of sodium ions into aboveground plant organs. The antistress effect of endophytic strains of B. subtilis and their ability to reduce the absorption of sodium ions by Triticum aestivum L. plants can be employed to promote plant growth during cultivation of crops on saline lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ji, C., Tian, H., Wang, X., Song, X., Ju, R., Li, H., Gao, Q., Li, C., Zhang, P., Li, J., Hao, L., Wang, C., Zhou, Y., Xu, R., Liu, Y., et al., Bacillus subtilis HG-15, a halotolerant rhizoplane bacterium, promotes growth and salinity tolerance in wheat (Triticum aestivum), BioMed Res. Int., 2022, vol. 2022. https://doi.org/10.1155/2022/9506227

  2. Gamalero, E., Bona, E., Todeschini, V., and Lingua, G., Saline and arid soils: impact on bacteria, plants, and their interaction, Biology, 2020, vol. 9, p. 116. https://doi.org/10.3390/biology9060116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Polash, M.A., Sakil, M.A., and Hossain, M.A., Plants responses and their physiological and biochemical defense mechanisms against salinity: A review, Trop. Plant Res., 2019, vol. 6, p. 250.

    Article  Google Scholar 

  4. Fortt, J., González, M., Morales, P., Araya, N., Remonsellez, F., Coba de la Peña, T., Ostria-Gallardo, E., and Stoll, A., Bacterial modulation of the plant ethylene signaling pathway improves tolerance to salt stress in lettuce (Lactuca sativa L.), Front. Sustain. Food Syst., 2022, vol. 6, p. 768250. https://doi.org/10.3389/fsufs.2022.768250

    Article  Google Scholar 

  5. Ren, C.-G., Kong, C.-C., Liu, Z.-Y., Zhong, Z.-H., Yang, J.-C., Wang, X.-L., and Qin, S., A perspective on developing a plant ‘holobiont’ for future saline agriculture, Front. Microbiol., 2022, vol. 13, p. 763014. https://doi.org/10.3389/fmicb.2022.763014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gao, Y., Zou, H., Wang, B., and Yuan, F., Progress and applications of plant growth-promoting bacteria in salt tolerance of crops, Int. J. Mol. Sci., 2022, vol. 23, p. 7036. https://doi.org/10.3390/ijms23137036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krishnamoorthy, R., Roy Choudhury, A., Walitang, D.I., Anandham, R., Senthilkumar, M., and Sa, T., Salt stress tolerance-promoting proteins and metabolites under plant-bacteria-salt stress tripartite interactions, Appl. Sci., 2022, vol. 12, p. 3126. https://doi.org/10.3390/app12063126

    Article  CAS  Google Scholar 

  8. Gupta, A., Mishra, R., Rai, S., Bano, A., Pathak, N., Fujita, M., Kumar, M., and Hasanuzzaman, M., Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture, Int. J. Mol. Sci., 2022, vol. 23, p. 3741. https://doi.org/10.3390/ijms2307374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., and Verma, J.P., Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants, Front. Microbiol., 2020, vol. 11, p. 1216. https://doi.org/10.3389/fmicb.2020.01216

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hameed, A., Ahmed, M.Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B., and Nielsen, B.L., Effects of salinity stress on chloroplast structure and function, Cells, 2021, vol. 10, p. 2023. https://doi.org/10.3390/cells10082023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahmad, R., Anjum, M.A., Khalid, M.F., Saqib, M., and Hassan, A., Oxidative stress and antioxidant defense mechanisms in plants under salt stress, in: Plant Abiotic Stress Tolerance, Hasanuzzaman, M., et al., Eds., Springer, Cham., 2019, p. 475. https://doi.org/10.1007/978-3-030-06118-0_8

  12. Pal, K.K., Dey, R., Sherathia, D.N., Devidayal Mangalassery, S., Kumar, A., Rupapara, R.B., Mandaliya, M., Rawal, P., Bhadania, R.A., Thomas, M., Patel, M.B., Maida, P., Nawade, B.D., Ahmad, S., Dash, P., and Radhakrishnan, T., Alleviation of salinity stress in peanut by application of endophytic bacteria, Front. Microbiol., 2021, vol. 12, p. 650771. https://doi.org/10.3389/fmicb.2021.650771

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bezrukova, M.V., Lubyanova, A.R., and Fatkhutdinova, R.A., The involvement of wheat and common bean lectins in the control of cell division in the root apical meristems of various plant species, Rus. J. Plant Phys., 2011, vol. 58, p. 174.

    Article  CAS  Google Scholar 

  14. Khairullin, R.M., Yarullina, L.G., Troshina, N.B., and Akhmetova, I.E., Chitooligosaccharide-induced activation of o-phenylenediamine oxidation by wheat seedlings in the presence of oxalic acid, Biochem. (Moscow), 2001, vol. 66, p. 286.

    Article  CAS  Google Scholar 

  15. Korolyuk, M.A., Ivanova, L.I., Mayorova, I.G., and Tokarev, V.E., Metod opredeleniya aktivnosti katalazy, Lab. delo, 1988, vol. 1, p. 16.

    Google Scholar 

  16. Costa, H., Gallego, S.M., and Tomaro, M.L., Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons, Plant Sci., 2002, vol. 162, p. 939.

    Article  CAS  Google Scholar 

  17. Folin, O. and Ciocalteu, O., On tyrosine and tryptophane determinations in proteins, J. Biol. Chem., 1927, vol. 73, p. 627.

    Article  CAS  Google Scholar 

  18. Singleton, V.L. and Rossi, J.A., Colorimetry of total phenolics with phosphomolyb-dicphoungstic acid reagent, Am. J. Enol. Vitic., 1965, vol. 16, p. 144.

    Article  CAS  Google Scholar 

  19. Shikhaleeva, G.N., Budnyak, A.K., Shikhaleev, I.I., and Ivashchenko, O.L., Modifitsirovannaya metodika opredeleniya prolina v rastitel’nykh ob’ektakh, Vis. Khark. nats. univ. Karazina. Ser.: biol., 2014, vol. 21, p. 168.

  20. GOST (State standard) 57059-2016: Feed, compound feed, compound feed sire. express method for determining moisture, 2020.

  21. GOST (State standard) 32250-2013 (ISO 7485:2000): Feed, compound feed. Method for determining the content of potassium and sodium using flame emission spectrometry, 2020.

  22. Melent'ev, A.I., Aerobnye sporoobrazuyushchie bakterii Bacillus Cohc v agroekosistemakh, Moskva: Nauka, 2007, 147 p.

    Google Scholar 

  23. Egorshina, A.A., Luk’yantsev, M.A., Khairullin, R.M., and Sakhabutdinova, A.R., Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11BM, Rus. J. Plant Phys., 2012, vol. 59, p. 134.

    Article  CAS  Google Scholar 

  24. Fatima, A., Hussain, S., Hussain, S., Ali, B., Ashraf, U., Zulfiqar, U., Aslam, Z., Al-Robai, S.A., Alzahrani, F.O., Hano, C., and El-Esawi, M.A., Differential morphophysiological, biochemical, and molecular responses of maize hybrids to salinity and alkalinity stresses, Agron., 2021, vol. 11, p. 1150. https://doi.org/10.3390/agronomy11061150

  25. Khan, I., Muhammad, A., Chattha, M.U., Skalicky, M., Bilal Chattha, M., Ahsin Ayub, M., Rizwan Anwar, M., Soufan, W., Hassan, M.U., Rahman, M.A., Brestic, M., Zivcak, M., and El Sabagh, A., Mitigation of salinity-induced oxidative damage, growth, and yield reduction in fine rice by sugarcane press mud application, Front. Plant Sci., 2022, vol. 13, p. 840900. https://doi.org/10.3389/fpls.2022.84090

  26. Santander, C., Vidal, G., Ruiz, A., Vidal, C., and Cornejo, P., Salinity eustress increases the biosynthesis and accumulation of phenolic compounds that improve the functional and antioxidant quality of red lettuce, Agron., 2022, vol. 12, p. 598. https://doi.org/10.3390/agronomy1203059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Kuramshina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Bulychev

Abbreviations: MDA—malondialdehyde; PGPR—plant growth-promoting rhizobacteria; ROS—reactive oxygen species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuramshina, Z.M., Khairullin, R.M. Improving Salt Stress Tolerance of Triticum aestivum L. with Endophytic Strains of Bacillus subtilis. Russ J Plant Physiol 70, 53 (2023). https://doi.org/10.1134/S1021443722603068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722603068

Keywords:

Navigation