Publicado

2020-12-01

Modification and Expression of Beta-1,4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21.

Modificación y expresión de secuencias de beta-1,4-endoglucanasa de origen fúngico en Escherichia coli BL21.

Modificação e expressão de secuencias de beta-1,4-endoglucanasa de origem fúngica na Escherichia coli BL21.

DOI:

https://doi.org/10.15446/rev.colomb.biote.v22n2.79448

Palabras clave:

Cellulose, heterologous expression, Lignocellulolytic enzymes (en)
Celulosa, expresión heteróloga, enzimas lignocelulolíticas (es)

Descargas

Autores/as

Lignocellulose is the main and most abundant component of biomass. Annually, 200 million tons are generated in the world. Colombia has a high production of lignocellulosic residues that can be used in many industrial processes such as bioethanol production, promoting the bioeconomy. The objective of the present work was to express lignocellulolytic enzymes of eukaryotic origin in Escherichia coli BL21 (DE3). Initially, endoglucanase eukaryotic genes were selected and modified using bioinformatics methods for their production in E. coli BL21 (DE3) and saccharification of pure cellulose substrates. The gene selected for its modification and expression was eglB from the fungus Aspergillus nidulans. Subsequently the enzyme integrity was tested by 3D modeling and molecular docking, as well as the conformation of its active site and its affinity for substrates of interest. Finally, cloning of the modified gene in plasmid pET151 TOPO was made and transformed in the strain E. coli BL21 (DE3) where several lignocellulose degradation tests were carried out using semiquantitative methods for the enzyme activity in carboxymethylcellulose. The presence of the three genes of interest within the plasmid pET151 TOPO and within the transformed cells of E. coli TOP10 and E. coli BL21 (DE3) was verified by colony PCRs performed. The presence of this gen was corroborated by sequencing. Expression of the modified endoglucanase enzyme was achieved in E. coli BL21 (DE3) expression cells, in soluble and functional form, demonstrated by the hydrolysis of the CMC substrate.

La lignocelulosa es el componente principal y más abundante de la biomasa. Anualmente se generan 200 millones de toneladas en el mundo. Colombia tiene una alta producción de residuos lignocelulósicos que pueden ser utilizados en muchos procesos industriales como la producción de bioetanol, promoviendo la bioeconomía. El objetivo del presente trabajo fue expresar enzimas lignocelulolíticas de origen eucariota en Escherichia coli BL21 (DE3). Inicialmente, los genes eucariotas de endoglucanasa se seleccionaron y modificaron mediante métodos bioinformáticos para su producción en E. coli BL21 (DE3) y la sacarificación de sustratos de celulosa. El gen seleccionado para su modificación y expresión fue eglB del hongo Aspergillus nidulans. Posteriormente se evaluó la integridad de la enzima mediante modelado 3D y acoplamiento molecular, así como la conformación de su sitio activo y su afinidad por sustratos de interés. Finalmente, se realizó la clonación del gen modificado en el plásmido pET151 TOPO y se transformó en la cepa E. coli BL21 (DE3) donde se realizaron varios ensayos de degradación de lignocelulosa utilizando métodos semicuantitativos para la actividad enzimática en carboximetilcelulosa. La presencia del gen de interés dentro del plásmido pET151 TOPO y dentro de las células transformadas de E. coli TOP10 y E. coli BL21 (DE3) se verificó mediante PCR de colonia. La presencia de este gene se corroboró por secuenciación eglB. La expresión de la enzima endoglucanasa modificada se logró en células de E. coli BL21 (DE3), en forma soluble y funcional, demostrada por la hidrólisis del sustrato de CMC.

A Colômbia possui uma alta produção de resíduos lignocelulósicos que podem ser usados em muitos processos industriais. Neste trabalho, genes eucarióticos da endoglucanase foram selecionados e modificados usando métodos de bioinformática para sua produção em E. coliBL21 (DE3) e sacarificação de substratos de celulose pura. O gene selecionado para sua modificação e expressão foi o eglB do fungo Aspergillus nidulans. A integridade da enzima foi testada por modelagem 3D e acoplamento molecular, bem como a conformação de seu sítio ativo e sua afinidade por substratos de interesse.

Finalmente, a clonagem do gene modificado no plasmídeo pET151 TOPO foi feita e transformada na cepa E. coli BL21 (DE3) onde vários testes de degradação de lignocelulose foram realizados usando métodos semiquantitativos para a atividade enzimática em carboximetilcelulose. Este é um passo adiante na produção de endoglucanase in vitro, com alta eficiência, porque as bactérias têm baixo custo e alta expressão no sistema de produção.

Referencias

Agapito, G., Guzzi, P. H., & Cannataro, M. (2013). Visualization of protein interaction networks: problems and solutions. BMC Bioinformatics, 14 Suppl 1(Suppl 1), 1–30. http://doi.org/10.1186/1471-2105-14-S1-S1 DOI: https://doi.org/10.1186/1471-2105-14-S1-S1

Alcalde, M., & Bulter, T. (2003). Colorimetric assays for screening laccases. Methods in Molecular Biology (Clifton, N.J.), 230(10), 193–201. http://doi.org/10.1385/1-59259-396-8:193 DOI: https://doi.org/10.1385/1-59259-396-8:193

Archibald, F. S. (1992). A new assay for lignin-type peroxidases employing the dye Azure B. Applied and Environmental Microbiology, 58(9), 3110–3116. http://doi.org/0099-2240/92/093110-07 DOI: https://doi.org/10.1128/aem.58.9.3110-3116.1992

Ariffin, H., Abdullah, N., Umi Kalsom, M. S., Shirai, Y., & Hassan, M. . (2006). Production and characterization of cellulase by Bacillus pumilus EB3. International Journal of Engineering and Technology, 3(1), 47–53. Retrieved from http://www.ijet.feiic.org/journals/J-2006-V1005.pdf

Bauer, S., Vasu, P., Persson, S., Mort, A. J., & Somerville, C. R. (2006). Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11417–11422. http://doi.org/10.1073/pnas.0604632103 DOI: https://doi.org/10.1073/pnas.0604632103

Bayer, E. a, Belaich, J.-P., Shoham, Y., & Lamed, R. (2004). The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiology, 58, 521–54. http://doi.org/10.1146/annurev.micro.57.030502.091022 DOI: https://doi.org/10.1146/annurev.micro.57.030502.091022

Belancic, A., Scarpa, J., Peirano, A., D??az, R., Steiner, J., & Eyzaguirre, J. (1995). Penicillium purpurogenum produces several xylanases: Purification and properties of two of the enzymes. Journal of Biotechnology, 41(1), 71–79. http://doi.org/10.1016/0168-1656(95)00057-W DOI: https://doi.org/10.1016/0168-1656(95)00057-W

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. http://doi.org/10.1093/nar/28.1.235 DOI: https://doi.org/10.1093/nar/28.1.235

Bertrand, B., Martínez-Morales, F., & Trejo-Hernández, M. R. (2013). Fungal Laccases: Induction and production. Revista Mexicana de Ingeniería Química, 12(3), 23–43.

Blodig, W., Smith, A. T., Doyle, W. A., & Piontek, K. (2001). Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. Journal of Molecular Biology, 305(4), 851–61. http://doi.org/10.1006/jmbi.2000.4346 DOI: https://doi.org/10.1006/jmbi.2000.4346

Bohórquez Saval, S. (2012). Aprovechamiento de residuos agroindustriales: pasado, presente y futuro. Revista de La Sociedad Mexicana de Biotecnología Y Bioingeniería, 16(2), 14–47.

Brown, M. E., & Chang, M. C. Y. (2014). Exploring bacterial lignin degradation. Current Opinion in Chemical Biology, 19(1), 1–7. http://doi.org/10.1016/j.cbpa.2013.11.015 DOI: https://doi.org/10.1016/j.cbpa.2013.11.015

Bugg, T. D. H., Ahmad, M., Hardiman, E. M., & Rahmanpour, R. (2011). Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 28(12), 1883–96. http://doi.org/10.1039/c1np00042j DOI: https://doi.org/10.1039/c1np00042j

Chávez, R., Bull, P., & Eyzaguirre, J. (2006). The xylanolytic enzyme system from the genus Penicillium. Journal of Biotechnology, 123(4), 413–433. http://doi.org/10.1016/j.jbiotec.2005.12.036 DOI: https://doi.org/10.1016/j.jbiotec.2005.12.036

Chávez, R., Navarro, C., Caldeón, I., Peirano, A., Bull, P., & Eyzaguirre, J. (2002). Secretion of endoxylanase A from Penicillium purpurogenum by Saccharomyces cerevisiae transformed with genomic fungal DNA. FEMS Microbiology Letters, 212(2), 237–241. http://doi.org/10.1016/S0378-1097(02)00750-4 DOI: https://doi.org/10.1016/S0378-1097(02)00750-4

Cheng, C., & Shuman, S. (2000). Recombinogenic flap ligation pathway for intrinsic repair of topoisomerase IB-induced double-strand breaks. Molecular and Cellular Biology, 20(21), 8059–68. http://doi.org/10.1128/MCB.20.21.8059-8068.2000 DOI: https://doi.org/10.1128/.20.21.8059-8068.2000

Christensen, S. K., Maenhaut-Michel, G., Mine, N., Gottesman, S., Gerdes, K., & Van Melderen, L. (2004). Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: Involvement of the yefM-yoeB toxin-antitoxin system. Molecular Microbiology, 51(6), 1705–1717. http://doi.org/10.1046/j.1365-2958.2003.03941.x DOI: https://doi.org/10.1046/j.1365-2958.2003.03941.x

Ciolacu, D., Ciolacu, F., & Popa, V. I. (2011). Amorphous Cellulose – Structure and Characterization. Cellulose Chemistry and Technology, 45, 13–21.

Cuervo, L., Folch, J., & Quiroz, R. (2009). Lignocelulosa como fuente de azúcares para la producción de etanol. Bio Tecnología, 13(3), 11–25. Retrieved from http://www.smbb.com.mx/revista/Revista_2009_3/Lignocelulosa.pdf

Daegelen, P., Studier, F. W., Lenski, R. E., Cure, S., & Kim, J. F. (2009). Tracing Ancestors and Relatives of Escherichia coli B, and the Derivation of B Strains REL606 and BL21(DE3). Journal of Molecular Biology, 394(4), 634–643. http://doi.org/10.1016/j.jmb.2009.09.022 DOI: https://doi.org/10.1016/j.jmb.2009.09.022

de Vries, R. P., Visser, J., Ronald, P., de Vries, R., & P. (2001). Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiology and Molecular Biology Reviews, 65(4), 497–522. http://doi.org/10.1128/MMBR.65.4.497 DOI: https://doi.org/10.1128/MMBR.65.4.497-522.2001

Devos, D., & Valencia, a. (2000). Practical limits of functional prediction. Proteins, 41(February), 98–107. DOI: https://doi.org/10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.0.CO;2-S

Dhakar, K., & Pandey, A. (2013). Laccase production from a temperature and pH tolerant fungal strain of Trametes hirsuta (MTCC 11397). Enzyme Research, 2013. http://doi.org/10.1155/2013/869062 DOI: https://doi.org/10.1155/2013/869062

Ducros, V., Brzozowski, A. M., Wilson, K. S., Brown, S. H., Ostergaard, P., Schneider, P., … Davies, G. J. (1998). Crystal structure of the type 2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nature Structural Biology, (5), 400–406. http://doi.org/10.1038/nsb0698-432 DOI: https://doi.org/10.1038/nsb0498-310

Dumon-Seignovert, L., Cariot, G., & Vuillard, L. (2004). The toxicity of recombinant proteins in Escherichia coli: A comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expression and Purification, 37(1), 203–206. http://doi.org/10.1016/j.pep.2004.04.025 DOI: https://doi.org/10.1016/j.pep.2004.04.025

El-Naggar, N. E. A., Abdelwahed, N. A. M., Mohamed, A. A., & Saber, W. I. A. (2014). Bioprocessing of some agro-industrial residues for endoglucanase production by the new subsp.; Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J. Brazilian Journal of Microbiology, 45(2), 743–756. http://doi.org/10.1590/S1517-83822014005000049 DOI: https://doi.org/10.1590/S1517-83822014005000049

Ellis, T., Adie, T., & Baldwin, G. S. (2011). DNA assembly for synthetic biology: from parts to pathways and beyond. Integrative Biology : Quantitative Biosciences from Nano to Macro, 3(2), 109–118. http://doi.org/10.1039/c0ib00070a DOI: https://doi.org/10.1039/c0ib00070a

Engebrecht, J. (1990). Minipreps of Plasmid DNA. Current Protocols in Molecular Biology, 1(1991), 1.6.1-1.6.10. http://doi.org/10.1002/0471142727

Engebrecht, J., Brent, R., & Kaderbhai, M. A. (1990). Minipreps of Plasmid DNA. Current Protocols in Molecular Biology, 1(1991), 1.6.1-1.6.10. http://doi.org/10.1002/0471142727 DOI: https://doi.org/10.1002/0471142727

Enguita, F. J., Marçal, D., Martins, L. O., Grenha, R., Henriques, A. O., Lindley, P. F., & Carrondo, M. A. (2004). Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. Journal of Biological Chemistry, 279(22), 23472–23476. http://doi.org/10.1074/jbc.M314000200 DOI: https://doi.org/10.1074/jbc.M314000200

Escobar H, A. de J., & Días, C. R. (2013). Diseño De Las Etapas De Hidrólisis De Almidón Y Fermentación Para Producir Bioetanol Basado En La Respuesta Dinámica Del Sistema, 1–119. Retrieved from http://190.25.234.130:8080/jspui/bitstream/11227/67/1/DISEÑO DE LAS ETAPAS DE HIDRÓLISIS DE ALMIDÓN Y FERMENTACIÓN PARA PRODUCIR BIOETANOL BASADO EN LA.pdf

Ewing, T. J. A., Makino, S., Skillman, A. G., & Kuntz, I. D. (2001). DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design, 15(5), 411–428. http://doi.org/10.1023/A:1011115820450 DOI: https://doi.org/10.1023/A:1011115820450

Faure, E., Bagnara, C., Belaich, A., & Belaich, J. P. (1988). Cloning and expression of two cellulase genes of Clostridium cellulolyticum in Escherichia coli. Gene, 65(1), 51–58. http://doi.org/10.1016/0378-1119(88)90416-7 DOI: https://doi.org/10.1016/0378-1119(88)90416-7

Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., … Punta, M. (2014). Pfam: The protein families database. Nucleic Acids Research, 42(D1), 1–9. http://doi.org/10.1093/nar/gkt1223 DOI: https://doi.org/10.1093/nar/gkt1223

Forsdyke, D. R. (2011). Evolutionary Bioinformatics (2nd ed.). Ontario: Springer Science+Business Media. http://doi.org/10.1007/978-1-4419-7771-7 DOI: https://doi.org/10.1007/978-1-4419-7771-7

Francis, D. M., & Page, R. (2010). Strategies to optimize protein expression in E. coli. Current Protocols in Protein Science, (SUPPL. 61), 1–29. http://doi.org/10.1002/0471140864.ps0524s61 DOI: https://doi.org/10.1002/0471140864.ps0524s61

Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S., & Kosaki, T. (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biology and Biochemistry, 57, 109–115. http://doi.org/10.1016/j.soilbio.2012.07.007 DOI: https://doi.org/10.1016/j.soilbio.2012.07.007

Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L., Wortman, J. R., Batzoglou, S., … Birren, B. W. (2005). Sequencing of Aspergillus nidulans and comparative analysis with A . fumigatus and A . oryzae. Nature, 438(December), 1105–1115. http://doi.org/10.1038/nature04341 DOI: https://doi.org/10.1038/nature04341

Galhaup, C., & Haltrich, D. (2001). Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Applied Microbiology and Biotechnology, 56(1–2), 225–232. http://doi.org/10.1007/s002530100636 DOI: https://doi.org/10.1007/s002530100636

Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource Technology, 99(16), 7623–7629. http://doi.org/10.1016/j.biortech.2008.02.005 DOI: https://doi.org/10.1016/j.biortech.2008.02.005

Gaspar, P., Oliveira, J. L., Frommlet, J., Santos, M. A. S., & Moura, G. (2012). EuGene: Maximizing synthetic gene design for heterologous expression. Bioinformatics, 28(20), 2683–2684. http://doi.org/10.1093/bioinformatics/bts465 DOI: https://doi.org/10.1093/bioinformatics/bts465

Glover, D. M. (2013). Genetic engineering cloning DNA. New York: Springer Science & Business Media.

Gopal, G. J., & Kumar, A. (2013). Strategies for the production of recombinant protein in Escherichia coli. The Protein Journal, 32(6), 419–25. http://doi.org/10.1007/s10930-013-9502-5 DOI: https://doi.org/10.1007/s10930-013-9502-5

Griffiths, A., Gelbart, W., Miller, J., & Lewontin, R. (1999). Expressing Eukaryotic Genes in Bacteria. In Modern Genetic Analysis. New York: W. H. Freeman and Company.

Grodberg, J., & Dunn, J. J. (1988). Ompt Encodes the Escherichia-Coli Outer-Membrane Protease That Cleaves T7-Rna Polymerase During Purification. Journal of Bacteriology, 170(3), 1245–1253. DOI: https://doi.org/10.1128/jb.170.3.1245-1253.1988

Gronenberg, L. S., Marcheschi, R. J., & Liao, J. C. (2013). Next generation biofuel engineering in prokaryotes. Current Opinion in Chemical Biology, 17(3), 462–471. http://doi.org/10.1016/j.cbpa.2013.03.037 DOI: https://doi.org/10.1016/j.cbpa.2013.03.037

Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(SUPPL. 2), 270–277. http://doi.org/10.1093/nar/gkr366 DOI: https://doi.org/10.1093/nar/gkr366

Guarente, L., Roberts, T. M., & Ptashne, M. (1980). A technique for expressing eukaryotic genes in bacteria. Science (New York, N.Y.), 209(4463), 1428–30. http://doi.org/10.1126/science.6158095 DOI: https://doi.org/10.1126/science.6158095

Gupta, a, Gandhimathi, a, Sharma, P., & Jayaram, B. (2007). ParDOCK: an all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein and Peptide Letters, 14(7), 632–646. http://doi.org/10.2174/092986607781483831 DOI: https://doi.org/10.2174/092986607781483831

Gvritishvili, A. G., Leung, K. W., & Tombran-Tink, J. (2010). Codon preference optimization increases heterologous PEDF expression. PLoS ONE, 5(11), 1–13. http://doi.org/10.1371/journal.pone.0015056 DOI: https://doi.org/10.1371/journal.pone.0015056

Hanahan, B. D., Jessee, J., & Bloom, F. R. (1991). Plasmid Transformation of Eschericia coli and Other Bacteria. Methods in Enzymology, 204(1970), 63–113. DOI: https://doi.org/10.1016/0076-6879(91)04006-A

Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology, 166(4), 557–580. http://doi.org/10.1016/S0022-2836(83)80284-8 DOI: https://doi.org/10.1016/S0022-2836(83)80284-8

Hasper, A. A., Dekkers, E., Van Mil, M., Van de Vondervoort, P. J. I., & De Graaff, L. H. (2002). EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Applied and Environmental Microbiology, 68(4), 1556–1560. http://doi.org/10.1128/AEM.68.4.1556-1560.2002 DOI: https://doi.org/10.1128/AEM.68.4.1556-1560.2002

Hauli, I., Sarkar, B., Mukharjee, T., Chattopadhyay, A., & Mukhopadhyay, S. K. (2013). Alkaline extraction of xylan from agricultural waste , for the cost effective production of xylooligosaccharides , using thermoalkaline xylanase of thermophilic Anoxybacillus sp. Ip-C. International Journal of Pure & Applied Bioscience, 1(6), 126–131.

Headon, D. R., & Walsh, G. (1994). The industrial production of enzymes. Biotechnology Advances, 12(4), 635–646. http://doi.org/10.1016/0734-9750(94)90004-3 DOI: https://doi.org/10.1016/0734-9750(94)90004-3

Hetal K, P., Ratna A, T., & Pratibha B, D. (2013). Docking Studies of Components of Tulsi and Mamejavo against Plasmodium Lactate Dehydrogenase. International Research Journal of Biological Sciences, 2(2), 8–12.

Hofrichter, M. (2002). Review: Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 30(4), 454–466. http://doi.org/10.1016/S0141-0229(01)00528-2 DOI: https://doi.org/10.1016/S0141-0229(01)00528-2

Howard, R. L., Abotsi, E., Jansen, van R. E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602–619. http://doi.org/10.5897/AJB2003.000-1115 DOI: https://doi.org/10.5897/AJB2003.000-1115

Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356. DOI: https://doi.org/10.1016/S0022-2836(61)80072-7

Janusz, G., Kucharzyk, K. H., Pawlik, A., Staszczak, M., & Paszczynski, A. J. (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzyme and Microbial Technology, 52(1), 1–12. http://doi.org/10.1016/j.enzmictec.2012.10.003 DOI: https://doi.org/10.1016/j.enzmictec.2012.10.003

Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., … Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30(9), 1236–1240. http://doi.org/10.1093/bioinformatics/btu031 DOI: https://doi.org/10.1093/bioinformatics/btu031

Jung, S.-K., & McDonald, K. (2011). Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics, 12(1), 340. http://doi.org/10.1186/1471-2105-12-340 DOI: https://doi.org/10.1186/1471-2105-12-340

Karmakar, M., & Ray, R. R. (2011). Current trends in research and application of microbial cellulases. Research Journal of Microbiology, 6(1), 1–5. http://doi.org/10.1007/s13398-014-0173-7.2 DOI: https://doi.org/10.3923/jm.2011.41.53

Kido, M., Yamanaka, K., Mitani, T., Niki, H., Ogura, T., & Hiraga, S. (1996). RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli. Journal of Bacteriology, 178(13), 3917–3925. DOI: https://doi.org/10.1128/jb.178.13.3917-3925.1996

Koschorreck, K., Richter, S. M., Ene, A. B., Roduner, E., Schmid, R. D., & Urlacher, V. B. (2008). Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Applied Microbiology and Biotechnology, 79(2), 217–224. http://doi.org/10.1007/s00253-008-1417-2 DOI: https://doi.org/10.1007/s00253-008-1417-2

Kovalenko, V. I. (2010). Crystalline cellulose: structure and hydrogen bonds. Russian Chemical Reviews, 79(3), 231–241. http://doi.org/10.1070/RC2010v079n03ABEH004065 DOI: https://doi.org/10.1070/RC2010v079n03ABEH004065

Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology, 35(5), 377–391. http://doi.org/10.1007/s10295-008-0327-8 DOI: https://doi.org/10.1007/s10295-008-0327-8

Lai, Q., Liu, Y., & Shao, Z. (2014). Bacillus xiamenensis sp. Nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 105(1), 99–107. http://doi.org/10.1007/s10482-013-0057-4 DOI: https://doi.org/10.1007/s10482-013-0057-4

Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658–1659. http://doi.org/10.1093/bioinformatics/btl158 DOI: https://doi.org/10.1093/bioinformatics/btl158

Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467. http://doi.org/10.1016/j.pecs.2012.03.002 DOI: https://doi.org/10.1016/j.pecs.2012.03.002

Liu, G., Qin, Y., Li, Z., & Qu, Y. (2013). Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnology Advances, 31(6), 962–975. http://doi.org/10.1016/j.biotechadv.2013.03.001 DOI: https://doi.org/10.1016/j.biotechadv.2013.03.001

Lockington, R. A., Rodbourn, L., Barnett, S., Carter, C. J., & Kelly, J. M. (2002). Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genetics and Biology, 37(2), 190–196. http://doi.org/10.1016/S1087-1845(02)00504-2 DOI: https://doi.org/10.1016/S1087-1845(02)00504-2

Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G., & Murrayy, N. E. (2014). Highlights of the DNA cutters: A short history of the restriction enzymes. Nucleic Acids Research, 42(1), 3–19. http://doi.org/10.1093/nar/gkt990 DOI: https://doi.org/10.1093/nar/gkt990

Lopes, M. S. G. (2015). Engineering biological systems toward a sustainable bioeconomy. Journal of Industrial Microbiology and Biotechnology, 42(6), 813–838. http://doi.org/10.1007/s10295-015-1606-9 DOI: https://doi.org/10.1007/s10295-015-1606-9

Madzhidova, V. E., Dalimova, G. N., & Pulatov, B. K. (1997). Alkaline hydrolisis of the natural lignin of cottonplant stems in the presence of anthraquinone. Chemistry of Natural Compounds, 32(5), 723–727. DOI: https://doi.org/10.1007/BF01375124

Magrane, M., & Consortium, U. P. (2011). UniProt Knowledgebase: A hub of integrated protein data. Database, 2011, 1–13. http://doi.org/10.1093/database/bar009 DOI: https://doi.org/10.1093/database/bar009

Malherbe, S., & Cloete, T. E. (2002). Lignocellulose biodegradation: Fundamentals and applications. Reviews in Environmental Science and Biotechnology, 1(2), 105–114. http://doi.org/10.1023/A:1020858910646 DOI: https://doi.org/10.1023/A:1020858910646

Mander, G. J., Wang, H., Bodie, E., Wagner, J., Vienken, K., Vinuesa, C., … Fischer, R. (2006). Use of laccase as a novel, versatile reporter system in filamentous fungi. Applied and Environmental Microbiology, 72(7), 5020–5026. http://doi.org/10.1128/AEM.00060-06 DOI: https://doi.org/10.1128/AEM.00060-06

Marana, S. R. (2012). Structural and mechanistic fundamentals for designing of cellulases. Computational and Structural Biotechnology Journal, 2(September), 1–7. http://doi.org/10.5936/csbj.201209006 DOI: https://doi.org/10.5936/csbj.201209006

Mardis, E. R. (2011). A decade’s perspective on DNA sequencing technology. Nature, 470(7333), 198–203. http://doi.org/10.1038/nature09796 DOI: https://doi.org/10.1038/nature09796

Martí-Renom, M. A., Stuart, A. C., Fiser, A., Sánchez, R., Melo, F., & Sali, A. (2000). Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure, 29, 291–325. http://doi.org/10.5121/ijsc.2012.3106 DOI: https://doi.org/10.1146/annurev.biophys.29.1.291

Meddeb-Mouelhi, F., Moisan, J. K., & Beauregard, M. (2014). A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme and Microbial Technology, 66, 16–19. http://doi.org/10.1016/j.enzmictec.2014.07.004 DOI: https://doi.org/10.1016/j.enzmictec.2014.07.004

Megazyme International. (2012). XYLAN (Beechwood) (Lot 141202).

Montoya, S., Sánchez, O. J., & Levin, L. (2014). Evaluación de actividades endoglucanasa, exoglucanasa, lacasa y lignina peroxidasa en diez hongos de pudrición blanca. Biotecnología En El Sector Agropecuario Y Agroindustria, 12(2), 115–124.

Moreira, L. R. S., & Filho, E. X. F. (2016). Insights into the mechanism of enzymatic hydrolysis of xylan. Applied Microbiology and Biotechnology. http://doi.org/10.1007/s00253-016-7555-z DOI: https://doi.org/10.1007/s00253-016-7555-z

Moreno, M. L. O., & Vélez, D. U. (2011). Determinación de la actividad lignocelulolítica en sustrato natural de aislamientos fúngicos obtenidos de sabana de pastoreo y de bosque secundario de sabana inundable tropical. Suelo, 28(2), 169–180.

Morris, G., & Huey, R. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of …, 30(16), 2785–2791. http://doi.org/10.1002/jcc.21256.AutoDock4 DOI: https://doi.org/10.1002/jcc.21256

Mukhopadhyay, a. (1997). Inclusion bodies and purification of proteins in biologically active forms. Advances in Biochemical Engineering/biotechnology, 56, 61–109. http://doi.org/10.1016/S0168-1656(02)00032-9 DOI: https://doi.org/10.1007/BFb0103030

Nicolini, C., Bruzzese, D., Cambria, M. T., Bragazzi, N. L., & Pechkova, E. (2013). Recombinant Laccase: I. Enzyme cloning and characterization. Journal of Cellular Biochemistry, 114(3), 599–605. http://doi.org/10.1002/jcb.24397 DOI: https://doi.org/10.1002/jcb.24397

Nierman, W. C., May, G., Kim, H. S., Anderson, M. J., Chen, D., & Denning, D. W. (2005). What the Aspergillus genomes have told us. Medical Mycology : Official Publication of the International Society for Human and Animal Mycology, 43 Suppl 1(April), S3–S5. http://doi.org/10.1080/13693780400029049 DOI: https://doi.org/10.1080/13693780400029049

Oliva Domínguez, J. M. (2003). Efecto de los productos de degradación originados en la explosión por vapor de biomasa de chopo sobre Kluyveromyces marxianus. Universidad Complutense de Madrid.

Oliver, J. L. (2001). Bioinformática, If you can´t do Bioinformatics you can’t do Biology. Revista Del Colegio Oficial de Biólogos de Andalucía, 5(4).

Omoumi, N., Shokrgozar, M., & Noormohammadi, Z. (2016). Design and Construction of Recombinant ELP-Intein Cassette for Use in Simple and new Purification Methods of Recombinant Proteins, 1(1), 49–55. DOI: https://doi.org/10.30699/mmlj17.1.2.84

Osmani, S. A., & Mirabito, P. M. (2004). The early impact of genetics on our understanding of cell cycle regulation in Aspergillus nidulans. Fungal Genetics and Biology, 41(4), 401–410. http://doi.org/10.1016/j.fgb.2003.11.009 DOI: https://doi.org/10.1016/j.fgb.2003.11.009

Pastrana, L. (1996). Fundamentos De La Fermentación En Estado Sólido Y Aplicación a La Industria Alimentaria. Ciencia Y Tecnologia Alimentaria, 1(3), 4–12. http://doi.org/10.1080/11358129609487556 DOI: https://doi.org/10.1080/11358129609487556

Patchett, M. L., Neal, T. L., Schofield, L. R., Strange, R. C., Daniel, R. M., & Morgan, H. W. (1989). Heat treatment purification of thermostable cellulase and hemicellulase enzymes expressed in E. coli. Enzyme and Microbial Technology, 11(2), 113–115. http://doi.org/10.1016/0141-0229(89)90069-0 DOI: https://doi.org/10.1016/0141-0229(89)90069-0

Persson, I., Tjerneld, F., & Hahn-Hägerdal, B. (1991). Fungal cellulolytic enzyme production: A review. Process Biochemistry, 26(2), 65–74. http://doi.org/10.1016/0032-9592(91)80019-L DOI: https://doi.org/10.1016/0032-9592(91)80019-L

Ponting, C. P., & Russell, R. R. (2002). The natural history of protein domains. Annual Review of Biophysics and Biomolecular Structure, 31, 45–71. http://doi.org/10.1146/annurev.biophys.31.082901.134314 DOI: https://doi.org/10.1146/annurev.biophys.31.082901.134314

Presnell, S. R., & Brenner, S. A. (1988). The design of synthetic genes. Nucleic Acids Research, 16(5), 1693–1702. DOI: https://doi.org/10.1093/nar/16.5.1693

Rådström, P., Knutsson, R., Wolffs, P., Lövenklev, M., & Löfström, C. (2004). Pre-PCR Processing. Strategies to generate PCR-compatible samples. Molecular Biotechnology, 26, 133–146. http://doi.org/10.1385/MB:26:2:133 DOI: https://doi.org/10.1385/MB:26:2:133

Ramón Auquilla, P. A., & Ramón Auquilla, D. A. (2012). Análisis de la capacidad degradativa de residuos lignocelulósicos utilizando el hongo Pleurotus ostreatus var. Florida. Universidad Politécnica Salesiana Sede Cuenca.

Rana, B. K., Bourne, P. E., & Insel, P. A. (2012). Receptor databases ans computational websites for ligand binding. Methods in Molecular Biology, 897(2177), 31–77. http://doi.org/10.1007/978-1-61779-909-9 DOI: https://doi.org/10.1007/978-1-61779-909-9

Reiss, R., Ihssen, J., & Thöny-Meyer, L. (2011). Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnology, 11(1), 9. http://doi.org/10.1186/1472-6750-11-9 DOI: https://doi.org/10.1186/1472-6750-11-9

Rivera Bustamante, R. F., Trejo Saavedra, D. L., & Rodríguez Negrete, E. A. (2015). Detection of transgenes in genetically modified organisms and their subproducts. Acta Universitaria, 25(NE-3), 24–39. http://doi.org/10.15174/au.2015.906 DOI: https://doi.org/10.15174/au.2015.906

Rodrigues, G. S., Rodrigues, I. A., Buschinelli, C. C. D. A., Ligo, A., Pires, A. M., Frighetto, R., … Paulo, D. S. (2007). Socio-Environmental Impact of Biodiesel Production in Brazil. Journal of Technology Management & Innovation, 2(2), 46–66.

Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5(APR), 1–17. http://doi.org/10.3389/fmicb.2014.00172 DOI: https://doi.org/10.3389/fmicb.2014.00172

Rosenblum, G., & Cooperman, B. S. (2014). Engine out of the chassis: Cell-free protein synthesis and its uses. FEBS Letters, 588(2), 261–268. http://doi.org/10.1016/j.febslet.2013.10.016 DOI: https://doi.org/10.1016/j.febslet.2013.10.016

Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2011). A Protocol for Computer-Based Protein Structure and Function Prediction. Journal of Visualized Experiments, (November), 1–11. http://doi.org/10.3791/3259 DOI: https://doi.org/10.3791/3259

Rudolph, R., & Lilie, H. (1996). In vitro folding of inclusion body proteins. FASEB Journal, 10, 49–56. http://doi.org/10.1021/bi2012965 DOI: https://doi.org/10.1096/fasebj.10.1.8566547

Ruhl, M., Majcherczyk, A., & Kues, U. (2013). Lcc1 and Lcc5 are the main laccases secreted in liquid cultures of Coprinopsis cinerea strains. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 103(5), 1029–1039. http://doi.org/10.1007/s10482-013-9883-7 DOI: https://doi.org/10.1007/s10482-013-9883-7

Samanta, A. K., Kolte, A. P., Senani, S., sridhar, M., & Jayapal, N. (2011). A simple and efficient diffusion technique for assay of endo B-1,4-xylanase activity. Brazilian Journal of Microbiology, 42(4), 1349–1353. http://doi.org/10.1590/S1517-83822011000400016 DOI: https://doi.org/10.1590/S1517-83822011000400016

Sánchez-Ramírez, J., Martínez-Hernández, J. L., Segura-Ceniceros, E. P., Contreras-Esquivel, J. C., Medina-Morales, M. A., Aguilar, C. N., & Iliná, A. (2014). Inmovilización de enzimas lignocelulolíticas en nanopartículas magnéticas. Quimica Nova, 37(3), 504–512. http://doi.org/10.5935/0100-4042.20140085 DOI: https://doi.org/10.5935/0100-4042.20140085

Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. http://doi.org/10.1016/j.biotechadv.2008.11.001 DOI: https://doi.org/10.1016/j.biotechadv.2008.11.001

Sánchez Riaño, A. M., Gutiérrez Morales, A. I., Muñoz Hernández, J. A., & Rivera Barrero, C. A. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Tumbaga, 5, 61–91. Retrieved from http://revistas.ut.edu.co/index.php/tumbaga/article/view/194/163

Saranraj, P., Stella, D., & Reetha, D. (2012). Microbial cellulases and its applictions: a review. International Journal of Biochemistry & Biotech Science, 1, 1–12.

Saratale, G., & Oh, S. (2014). Lignocellulosics to ethanol: The future of the chemical and energy industry. African Journal of Biotechnology, 11(5), 1002–1013. http://doi.org/10.4314/ajb.v11i5.

Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R., & Azevedo, V. (2012). Up-To-Date Insight on Industrial Enzymes Applications and Global Market. Journal of Bioprocessing & Biotechniques, S4(2), 1–10. http://doi.org/10.4172/2155-9821.S4-002 DOI: https://doi.org/10.4172/2155-9821.S4-002

SCHER, SCENIHR, & SCCS. (2014). Opinion on Synthetic Biology I Definition. (E. Union, Ed.). Scientific Committees.

Schubert, M., Ruedin, P., Civardi, C., Richter, M., Hach, A., & Christen, H. (2015). Laccase-catalyzed surface modification of thermo-mechanical pulp (TMP) for the production of wood fiber insulation boards using industrial process water. PLoS ONE, 10(6), 1–15. http://doi.org/10.1371/journal.pone.0128623 DOI: https://doi.org/10.1371/journal.pone.0128623

Schwarz, W. H. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology, 56(5–6), 634–649. http://doi.org/10.1007/s002530100710 DOI: https://doi.org/10.1007/s002530100710

Schwarz, W. H., Grabnitz, F., & Staudenbauer, W. L. (1986). Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Applied and Environmental Microbiology, 51(6), 1293–1299. DOI: https://doi.org/10.1128/aem.51.6.1293-1299.1986

Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. http://doi.org/10.1093/nar/gkg520 DOI: https://doi.org/10.1093/nar/gkg520

Sebastián de Erice, F. A. (2003). Análisis de genomas . Métodos para la predicción y anotación de la función de las proteínas. Universidad Autónoma de Madrid.

Sharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology and Biotechnology, 23(6), 823–832. http://doi.org/10.1007/s11274-006-9305-3 DOI: https://doi.org/10.1007/s11274-006-9305-3

Shelomi, M., Watanabe, H., & Arakawa, G. (2014). Endogenous cellulase enzymes in the stick insect (Phasmatodea) gut. Journal of Insect Physiology, 60(1), 25–30. http://doi.org/10.1016/j.jinsphys.2013.10.007 DOI: https://doi.org/10.1016/j.jinsphys.2013.10.007

Sigrist, C. J. A., De Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., … Xenarios, I. (2013). New and continuing developments at PROSITE. Nucleic Acids Research, 41(D1), 1–4. http://doi.org/10.1093/nar/gks1067 DOI: https://doi.org/10.1093/nar/gks1067

Silva, S. S., Carvalho, R. R., Fonseca, J. L. C., & Garcia, R. B. (1998). Extração e caracterização de xilanas de sabugos de milho. Polímeros, 8(2), 25–33. http://doi.org/10.1590/S0104-14281998000200005 DOI: https://doi.org/10.1590/S0104-14281998000200005

Singh, R., Shukla, A., Tiwari, S., & Srivastava, M. (2014). A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews, 32, 713–728. http://doi.org/10.1016/j.rser.2014.01.051 DOI: https://doi.org/10.1016/j.rser.2014.01.051

Smith, H. O., & Deich, R. a. (1981). DNA Binding and Uptake. Annual Review of Biochemestry, 50, 41–68. DOI: https://doi.org/10.1146/annurev.bi.50.070181.000353

Soden, D. M., O’Callaghan, J., & Dobson, A. D. W. (2002). Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology, 148(12), 4003–4014. http://doi.org/10.1099/00221287-148-12-4003 DOI: https://doi.org/10.1099/00221287-148-12-4003

Stajich, J. E., Wilke, S. K., Ahrén, D., Hang, C., Birren, B. W., Borodovsky, M., … Kwan, H. S. (2010). Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea ( Coprinus cinereus ). Pnas, 107(26), 11889–11894. http://doi.org/10.1073/pnas.1003391107 DOI: https://doi.org/10.1073/pnas.1003391107

Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., … Keasling, J. D. (2010). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463(7280), 559–562. http://doi.org/10.1038/nature08721 DOI: https://doi.org/10.1038/nature08721

Struhl, K. (1976). Functional Genetic Expression of Eukaryotic DNA in Escherichia coli. Proceedings of the National Academy of Sciences, 73(5), 1471–1475. http://doi.org/10.1073/pnas.73.5.1471 DOI: https://doi.org/10.1073/pnas.73.5.1471

Studier, F. W., Daegelen, P., Lenski, R. E., Maslov, S., & Kim, J. F. (2009). Understanding the Differences between Genome Sequences of Escherichia coli B Strains REL606 and BL21(DE3) and Comparison of the E. coli B and K-12 Genomes. Journal of Molecular Biology, 394(4), 653–680. http://doi.org/10.1016/j.jmb.2009.09.021 DOI: https://doi.org/10.1016/j.jmb.2009.09.021

Studier, F. W., & Moffatt, B. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology, 189(1), 113–130. http://doi.org/10.1016/0022-2836(86)90385-2 DOI: https://doi.org/10.1016/0022-2836(86)90385-2

Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial Cellulases - Productions, Applications and Challenges. Journal of Scientific and Industrial Research, 64(November), 832–844.

Tabor, S., & Richardson, C. C. (1985). A bacteriophage T7 RNA polymerase / promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences of the United States of America, 82(February), 1074–1078. DOI: https://doi.org/10.1073/pnas.82.4.1074

Taylor, R. D., Jewsbury, P. J., & Essex, J. W. (2002). A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design, 16(3), 151–166. http://doi.org/10.1023/A:1020155510718 DOI: https://doi.org/10.1023/A:1020155510718

Teng, D., Wang, J. H., Fan, Y., Yang, Y. L., Tian, Z. G., Luo, J., … Zhang, F. (2006). Cloning of β-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Applied Microbiology and Biotechnology, 72(4), 705–712. http://doi.org/10.1007/s00253-006-0329-2 DOI: https://doi.org/10.1007/s00253-006-0329-2

Thakur, A. (2013). Designing of potential new estrogen antagonists for treatment of endometriosis: Designing of ligands, molecular docking, activity, adme & toxicity prediction study. International Journal of Pharmacy and Pharmaceutical Sciences, 5(SUPPL 3), 451–455.

Tonon, F., & Odier, E. (1988). Influence of Veratryl Alcohol and Hydrogen Peroxide on Ligninase Activity and Ligninase Production by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 54(2), 466–472. DOI: https://doi.org/10.1128/aem.54.2.466-472.1988

Triana Caranton, C. F. (2010). Producción de etanol a partir de residuos provenientes del cultivo de café. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/1974/1/cristianfernandotrianacaranton.2010.pdf

Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., & Leunissen, J. A. M. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research, 35(SUPPL.2), 71–74. http://doi.org/10.1093/nar/gkm306 DOI: https://doi.org/10.1093/nar/gkm306

Voet, D., & Voet, J. G. (2006). Bioquimica (3rd ed.). Buenos Aires: Editorial Médica Panamericana.

Wood, I. P., Elliston, A., Ryden, P., Bancroft, I., Roberts, I. N., & Waldron, K. W. (2012). Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass and Bioenergy, 44(SEPTEMBER 2012), 117–121. http://doi.org/10.1016/j.biombioe.2012.05.003 DOI: https://doi.org/10.1016/j.biombioe.2012.05.003

Wu, G., Robertson, D. H., Brooks III, C. L., & Vieth, M. (2003). Detailed analysis of grid-based molecular docking: A case study of CDOCKER - A CHARMm based MD docking program. Journal of Computational Chemistry, 24, 1549–1562. http://doi.org/10.1002/jcc.10306 DOI: https://doi.org/10.1002/jcc.10306

Wu, Y. R., Luo, Z. H., Kwok-Kei Chow, R., & Vrijmoed, L. L. P. (2010). Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresource Technology, 101(24), 9772–9777. http://doi.org/10.1016/j.biortech.2010.07.091 DOI: https://doi.org/10.1016/j.biortech.2010.07.091

Xu, Q., Bayer, E. A., Goldman, M., Kenig, R., Shoham, Y., & Lamed, R. (2004). Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell-surface anchoring scaffoldin and a family-48 cellulase. Journal of Bacteriology, 186(4), 968–977. http://doi.org/10.1128/JB.186.4.968 DOI: https://doi.org/10.1128/JB.186.4.968-977.2004

Xue, B., Aiqiu, L., Xuefeng, L., & Jian Jun, L. (2012). Direct over-expression, characterization and H2O2 stability study of active Pleurotus eryngii versatile peroxidase in Escherichia coli. Biotechnology Letters, 34(8), 1537–1543. http://doi.org/10.1007/s10529-012-0940-5 DOI: https://doi.org/10.1007/s10529-012-0940-5

Yang, J., Yan, R., Roy, A., Xu, D., J, P., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nat Methods, 12(1), 7–8. http://doi.org/10.1038/nmeth.3213 DOI: https://doi.org/10.1038/nmeth.3213

Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181. http://doi.org/10.1093/nar/gkv342 DOI: https://doi.org/10.1093/nar/gkv342

Yang, J., & Zhang, Y. (2016). Protein structure and function prediction using I-Tasser. Current Protocols in Bioinformatics, 8(5), 583–592. http://doi.org/10.1002/aur.1474.Replication

Yaver, D. S., Xu, F., Golightly, E. J., Brown, K. M., Brown, S. H., Rey, M. W., … Mondorf, K. (1996). Purification, Characterization, Molecular Cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Applied and Environmental Microbiology, 62(3), 834–841. DOI: https://doi.org/10.1128/aem.62.3.834-841.1996

Yesubabu, & Elavazhagan, T. (2009). Expression of Eukaryotic Gene in E . coli. Middle-East Journal of Scientific Research, 4(3), 133–136.

You, C., Zhang, X. Z., & Zhang, Y. H. P. (2012). Simple cloning via direct transformation of PCR product (DNA multimer) to Escherichia coli and Bacillus subtilis. Applied and Environmental Microbiology, 78(5), 1593–1595. http://doi.org/10.1128/AEM.07105-11 DOI: https://doi.org/10.1128/AEM.07105-11

Young, F. E., & Spizizen, J. (1961). Physiological and genetic factors affecting transformation of Bacillus subtilis. Journal of Bacteriology, 81(5), 823–829. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=13787458 DOI: https://doi.org/10.1128/jb.81.5.823-829.1961

Young, L., & Dong, Q. (2004). Two-step total gene synthesis method. Nucleic Acids Research, 32(7), e59. http://doi.org/10.1093/nar/gnh058 DOI: https://doi.org/10.1093/nar/gnh058

Zelena, K., Eisele, N., & Berger, R. G. (2014). Escherichia coli as a production host for novel enzymes from basidiomycota. Biotechnology Advances, 32(8), 1382–1395. http://doi.org/10.1016/j.biotechadv.2014.08.006 DOI: https://doi.org/10.1016/j.biotechadv.2014.08.006

Zhao, M., Zeng, Z., Zeng, G., Huang, D., Feng, C., Lai, C., … Xie, G. (2012). Effects of ratio of manganese peroxidase to lignin peroxidase on transfer of ligninolytic enzymes in different composting substrates. Biochemical Engineering Journal, 67, 132–139. http://doi.org/10.1016/j.bej.2012.06.003 DOI: https://doi.org/10.1016/j.bej.2012.06.003

Cómo citar

APA

Gutierrez Calle, N., Restrepo Franco, G. M. y Galeano Vanegas, N. F. (2020). Modification and Expression of Beta-1,4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21. Revista Colombiana de Biotecnología, 22(2). https://doi.org/10.15446/rev.colomb.biote.v22n2.79448

ACM

[1]
Gutierrez Calle, N., Restrepo Franco, G.M. y Galeano Vanegas, N.F. 2020. Modification and Expression of Beta-1,4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21. Revista Colombiana de Biotecnología. 22, 2 (jul. 2020). DOI:https://doi.org/10.15446/rev.colomb.biote.v22n2.79448.

ACS

(1)
Gutierrez Calle, N.; Restrepo Franco, G. M.; Galeano Vanegas, N. F. Modification and Expression of Beta-1,4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21. Rev. colomb. biotecnol. 2020, 22.

ABNT

GUTIERREZ CALLE, N.; RESTREPO FRANCO, G. M.; GALEANO VANEGAS, N. F. Modification and Expression of Beta-1,4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21. Revista Colombiana de Biotecnología, [S. l.], v. 22, n. 2, 2020. DOI: 10.15446/rev.colomb.biote.v22n2.79448. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/79448. Acesso em: 30 abr. 2024.

Chicago

Gutierrez Calle, Natalia, Gloria Maria Restrepo Franco, y Narmer Fernando Galeano Vanegas. 2020. «4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21». Revista Colombiana De Biotecnología 22 (2). https://doi.org/10.15446/rev.colomb.biote.v22n2.79448.

Harvard

Gutierrez Calle, N., Restrepo Franco, G. M. y Galeano Vanegas, N. F. (2020) «4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21»., Revista Colombiana de Biotecnología, 22(2). doi: 10.15446/rev.colomb.biote.v22n2.79448.

IEEE

[1]
N. Gutierrez Calle, G. M. Restrepo Franco, y N. F. Galeano Vanegas, «4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21»., Rev. colomb. biotecnol., vol. 22, n.º 2, jul. 2020.

MLA

Gutierrez Calle, N., G. M. Restrepo Franco, y N. F. Galeano Vanegas. «4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21». Revista Colombiana de Biotecnología, vol. 22, n.º 2, julio de 2020, doi:10.15446/rev.colomb.biote.v22n2.79448.

Turabian

Gutierrez Calle, Natalia, Gloria Maria Restrepo Franco, y Narmer Fernando Galeano Vanegas. «4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21». Revista Colombiana de Biotecnología 22, no. 2 (julio 1, 2020). Accedido abril 30, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/79448.

Vancouver

1.
Gutierrez Calle N, Restrepo Franco GM, Galeano Vanegas NF. Modification and Expression of Beta-1,4-Endoglucanase encoding sequences of fungal origin in Escherichia coli BL21. Rev. colomb. biotecnol. [Internet]. 1 de julio de 2020 [citado 30 de abril de 2024];22(2). Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/79448

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

401

Descargas

Los datos de descargas todavía no están disponibles.