Studies on transformation of Escherichia coli with plasmids

https://doi.org/10.1016/S0022-2836(83)80284-8Get rights and content

Factors that affect the probability of genetic transformation of Escherichia coli by plasmids have been evaluated. A set of conditions is described under which about one in every 400 plasmid molecules produces a transformed cell. These conditions include cell growth in medium containing elevated levels of Mg2+, and incubation of the cells at 0°C in a solution of Mn2+, Ca2+, Rb+ or K+, dimethyl sulfoxide, dithiothreitol, and hexamine cobalt (III). Transformation efficiency declines linearly with increasing plasmid size. Relaxed and supercoiled plasmids transform with similar probabilities. Non-transforming DNAs compete consistent with mass. No significant variation is observed between competing DNAs of different source, complexity, length or form. Competition with both transforming and non-transforming plasmids indicates that each cell is capable of taking up many DNA molecules, and that the establishment of a transformation event is neither helped nor hindered significantly by the presence of multiple plasmids.

References (70)

  • BergmansH.E.N. et al.

    FEMS Microbiol Letters

    (1980)
  • BolivarF. et al.

    Gene

    (1977)
  • BoyerH.W. et al.

    J. Mol. Biol.

    (1969)
  • ChungB.-C. et al.

    Biochem. Biophys. Res. Commun.

    (1979)
  • DagertM. et al.

    Gene

    (1979)
  • EneaV. et al.

    J. Mol. Biol.

    (1975)
  • HanahanD. et al.

    Cell

    (1980)
  • MandelM. et al.

    J. Mol. Biol.

    (1970)
  • NorgardM.V. et al.

    Gene

    (1978)
  • OverathP. et al.

    Biochim. Biophys. Acta

    (1975)
  • PapahadjopoulosD. et al.

    Biochim. Biophys. Acta

    (1977)
  • PeruchoM. et al.

    Cell

    (1980)
  • SgaramellaV. et al.

    J. Mol. Biol.

    (1976)
  • VerkleijA.J. et al.

    Biochim. Biophys. Acta

    (1974)
  • WensinkP.C. et al.

    Cell

    (1974)
  • WidomJ. et al.

    J. Mol. Biol.

    (1980)
  • AppleyardR.K.

    Genetics

    (1954)
  • BackmanK. et al.
  • BassfordP.J. et al.

    J. Bacteriol.

    (1977)
  • BayerM.E.

    J. Virol.

    (1968)
  • BeheM. et al.

    Proc. Nat. Acad. Sci., U.S.A.

    (1981)
  • BergmansH.E.N. et al.

    J. Bacteriol.

    (1981)
  • BradbeerC. et al.

    J. Bacteriol.

    (1976)
  • CapaldoF.N. et al.

    J. Bacteriol.

    (1974)
  • Capaldo-KimballF. et al.

    J. Bacteriol.

    (1971)
  • ChangA.C.Y. et al.

    J. Bacteriol.

    (1978)
  • CohenS.N. et al.

    Proc. Nat. Acad. Sci., U.S.A.

    (1972)
  • CosloyS.D. et al.

    Proc. Nat. Acad. Sci. U.S.A.

    (1973)
  • CosloyS.D. et al.

    Mol. Gen. Genet.

    (1973)
  • CostertonJ.W. et al.

    Bacteriol. Rev.

    (1974)
  • CrosaJ.H. et al.

    Proc. Nat. Acad. Sci., U.S.A.

    (1975)
  • CurtissR. et al.
  • DavidN.A.

    Annu. Rev. Pharmacol.

    (1972)
  • DiMaioD. et al.

    Proc. Nat. Acad. Sci., U.S.A.

    (1982)
  • DiRienzoJ.M. et al.

    Annu. Rev. Biochem.

    (1978)
  • Cited by (8606)

    • AMP deaminase: A crucial regulator in nitrogen stress and lipid metabolism in Mucor circinelloides

      2024, Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
    View all citing articles on Scopus
    View full text