Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 30, 2023

Chitosan-coated magnetic nanorods and nanospheres: physicochemical characterizations and potential as methotrexate carriers for targeted drug delivery

  • Seyedeh-Masoumeh Taghizadeh , Neha Lal , Mahboubeh Karami-Darehnaranji , Reza Heydari , Azadeh Hamedi , Esmaeil Mirzaei , Amir Azadi , Aydin Berenjian EMAIL logo and Alireza Ebrahiminezhad EMAIL logo

Abstract

Spherical magnetite nanoparticles were employed in the almost all magnetic based drug delivery studies. But as we all know the shape of employed particles is one of the major deterministic properties that can significantly affect the physicochemical and biological features of nanostructures and so can fluctuate efficiency of drug delivery. However, it is worthy of consideration that so far no study has investigated the effect of the shape of nanoparticles in drug delivery. To some extent this deficiency in publications may be due to the fact that the synthesis of other forms of magnetite nanoparticles is not as developed as spherical nanoparticles. But recent experiments paved the way for the synthesis of magnetite nanoparticles specially magnetite nanorods (MNRs). So, for the first time, in the current experiment magnetite nanospheres (MNSs) and MNRs were compared in the potential for drug delivery. Chitosan is a natural and biocompatible compound that widely employed as coating material for the fabrication of anticancer drug nano-carriers. So in the present study this carbohydrate was chosen as coating material for the magnetic nanostructures. MNSs were synthesized via a co-precipitation reaction, and MNRs were obtained from the chemical reduction of iron oxide hydroxide (FeOOH) nanorods. Both nanostructures were loaded with methotrexate (MTX), and the release of the drug was measured. The chitosan-coated MNSs (C@MNSs) were 7–18 nm in diameter, and the chitosan-coated MNRs (C@MNRs) were 5–21 nm in width and 29–108 nm in length and had a porous structure. The C@MNSs had a magnetic saturation of ∼80 emu/g, whereas that for the C@MNRs was ∼45 emu/g. The synthesized nanostructures exhibited low toxicity and were able to release the drug inside the cells. The findings of this study demonstrate the suitability of C@MNRs as an alternative to spherical nano-carriers for the efficient and contained delivery of anticancer drugs to designated target cells.


Corresponding authors: Aydin Berenjian, Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA, E-mail: ; and Alireza Ebrahiminezhad, Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, E-mail:

  1. Research ethics: It is declared that any animal or human studies were performed in this experiment and there is any ethical issue to report.

  2. Author contributions: Seyedeh-Masoumeh Taghizadeh; Manuscript draft preparation and experimental studies for loading and release tests, graphical art works. Neha Lal; Manuscript preparation, data analysis and formatting, graphical art works. Mahboubeh Karami-Darehnaranji; Experimental studies for the synthesis of nanostructures. Reza Heydari & Azadeh Hamedi; Experimental studies for the cellular experiments. Esmaeil Mirzaei and Amir Azadi; Developing the theory and providing experimental procedures, Aydin Berenjian; Supervision, revision and proof reading, Alireza Ebrahiminezhad; Grant owner, supervision, developing the theory and providing experimental procedures, experimental studies for characterization of nanoparticles, manuscript edition.

  3. Competing interests: The authors declared that there is no competing interest.

  4. Research funding: This experimental study was financially supported by Shiraz University of medical sciences, Shiraz, Iran under grant No. 20540. The authors were also grateful to The University of Waikato, Hamilton 3240, New Zealand and Colorado State University, Fort Collins, CO 80523, USA for their constrictive collaborations.

  5. Data availability: The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

1. Yu, D., Zhang, S., Feng, A., Xu, D., Zhu, Q., Mao, Y., Zhao, Y., Lv, Y., Han, C., Liu, R., Tian, Y. Methotrexate, doxorubicin, and cisplatinum regimen is still the preferred option for osteosarcoma chemotherapy: a meta-analysis and clinical observation. Medicine 2019, 98, e15582; https://doi.org/10.1097/md.0000000000015582.Search in Google Scholar

2. Han, K. S., Joung, J. Y., Kim, T. S., Jeong, I. G., Seo, H. K., Chung, J., Lee, K. H. Methotrexate, vinblastine, doxorubicin and cisplatin combination regimen as salvage chemotherapy for patients with advanced or metastatic transitional cell carcinoma after failure of gemcitabine and cisplatin chemotherapy. Br. J. Cancer 2008, 98, 86–90; https://doi.org/10.1038/sj.bjc.6604113.Search in Google Scholar PubMed PubMed Central

3. Rodríguez, F., Caruana, P., De la Fuente, N., Español, P., Gámez, M., Balart, J., Llurba, E., Rovira, R., Ruiz, R., Martín-Lorente, C., Corchero, J. L., Céspedes, M. V. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules 2022, 12, 784; https://doi.org/10.3390/biom12060784.Search in Google Scholar PubMed PubMed Central

4. Li, Z., Tan, S., Li, S., Shen, Q., Wang, K. Cancer drug delivery in the nano era: an overview and perspectives. Oncol. Rep. 2017, 38, 611–624; https://doi.org/10.3892/or.2017.5718.Search in Google Scholar PubMed PubMed Central

5. Xiang, J., Zhao, R., Wang, B., Sun, X., Guo, X., Tan, S., Liu, W. Advanced nano-carriers for anti-tumor drug loading. Front. Oncol. 2021, 11, 758143; https://doi.org/10.3389/fonc.2021.758143.Search in Google Scholar PubMed PubMed Central

6. Li, J., Wang, Q., Xia, G., Adilijiang, N., Li, Y., Hou, Z., Fan, Z. Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics 2023, 15, 2233; https://doi.org/10.3390/pharmaceutics15092233.Search in Google Scholar PubMed PubMed Central

7. kianfar, E. Magnetic nanoparticles in targeted drug delivery: a review. J. Supercond. Novel Magn. 2021, 34, 1709–1735; https://doi.org/10.1007/s10948-021-05932-9.Search in Google Scholar

8. Sakurai, Y., Akita, H., Harashima, H. Targeting tumor endothelial cells with nanoparticles. Int. J. Mol. Sci. 2019, 20, 5819; https://doi.org/10.3390/ijms20235819.Search in Google Scholar PubMed PubMed Central

9. Wu, J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J. Pers. Med. 2021, 11, 771; https://doi.org/10.3390/jpm11080771.Search in Google Scholar PubMed PubMed Central

10. Shukla, T., Upmanyu, N., Pandey, S. P., Sudheesh, M. S. Chapter 14 – Site-specific drug delivery, targeting, and gene therapy. In Nanoarchitectonics in Biomedicine; Grumezescu, A. M., Ed., 1st ed. Elsevier: Amsterdam, Netherlands, 2019; pp. 473–505.10.1016/B978-0-12-816200-2.00013-XSearch in Google Scholar

11. Leporatti, S. Thinking about enhanced permeability and retention effect (EPR). J. Pers. Med. 2022, 12, 1259; https://doi.org/10.3390/jpm12081259.Search in Google Scholar PubMed PubMed Central

12. Petersen, G. H., Alzghari, S. K., Chee, W., Sankari, S. S., La-Beck, N. M. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J. Controlled Release 2016, 232, 255–264; https://doi.org/10.1016/j.jconrel.2016.04.028.Search in Google Scholar PubMed

13. Maeda, H. Nitroglycerin enhances vascular blood flow and drug delivery in hypoxic tumor tissues: analogy between angina pectoris and solid tumors and enhancement of the EPR effect. J. Controlled Release 2010, 142, 296–298; https://doi.org/10.1016/j.jconrel.2010.01.002.Search in Google Scholar PubMed

14. Maeda, H. The link between infection and cancer: tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect. Cancer Sci. 2013, 104, 779–789; https://doi.org/10.1111/cas.12152.Search in Google Scholar PubMed PubMed Central

15. Maeda, H., Nakamura, H., Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Delivery Rev. 2013, 65, 71–79; https://doi.org/10.1016/j.addr.2012.10.002.Search in Google Scholar PubMed

16. Sano, K., Nakajima, T., Choyke, P. L., Kobayashi, H. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 2013, 7, 717–724; https://doi.org/10.1021/nn305011p.Search in Google Scholar PubMed PubMed Central

17. Narmani, A., Rezvani, M., Farhood, B., Darkhor, P., Mohammadnejad, J., Amini, B., Refahi, S., Abdi Goushbolagh, N. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev. Res. 2019, 80, 404–424; https://doi.org/10.1002/ddr.21545.Search in Google Scholar PubMed

18. Hosu, O., Tertis, M., Cristea, C. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry 2019, 5, 55; https://doi.org/10.3390/magnetochemistry5040055.Search in Google Scholar

19. Tataru, G., Popa, M., Desbrieres, J. Magnetic microparticles based on natural polymers. Int. J. Pharm. 2011, 404, 83–93; https://doi.org/10.1016/j.ijpharm.2010.11.002.Search in Google Scholar PubMed

20. Chertok, B., Moffat, B. A., David, A. E., Yu, F., Bergemann, C., Ross, B. D., Yang, V. C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008, 29, 487–496; https://doi.org/10.1016/j.biomaterials.2007.08.050.Search in Google Scholar PubMed PubMed Central

21. Safarik, I., Safarikova, M. Magnetically modified microbial cells: a new type of magnetic adsorbents. China Particuol. 2007, 5, 19–25; https://doi.org/10.1016/j.cpart.2006.12.003.Search in Google Scholar

22. Gholami, A., Mousavi, S. M., Hashemi, S. A., Ghasemi, Y., Chiang, W.-H., Parvin, N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab. Rev. 2020, 52, 205–224; https://doi.org/10.1080/03602532.2020.1726943.Search in Google Scholar PubMed

23. Dongsar, T. T., Dongsar, T. S., Abourehab, M. A. S., Gupta, N., Kesharwani, P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur. Polym. J. 2023, 187, 111898; https://doi.org/10.1016/j.eurpolymj.2023.111898.Search in Google Scholar

24. Andrade, R. G., Veloso, S. R., Castanheira, E. Shape anisotropic iron oxide-based magnetic nanoparticles: synthesis and biomedical applications. Int. J. Mol. Sci. 2020, 21, 2455; https://doi.org/10.3390/ijms21072455.Search in Google Scholar PubMed PubMed Central

25. Du, B., Yu, M., Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 2018, 3, 358–374; https://doi.org/10.1038/s41578-018-0038-3.Search in Google Scholar

26. Liu, Y., Hardie, J., Zhang, X., Rotello, V.M. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 2017, 34, 25–32; https://doi.org/10.1016/j.smim.2017.09.011.Search in Google Scholar PubMed PubMed Central

27. Ye, H., Shen, Z., Yu, L., Wei, M., Li, Y. Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine. Proc. R. Soc. A 2018, 474, 20170845; https://doi.org/10.1098/rspa.2017.0845.Search in Google Scholar PubMed PubMed Central

28. Wang, W., Gaus, K., Tilley, R. D., Gooding, J. J. The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us? Mater. Horiz. 2019, 6, 1538–1547; https://doi.org/10.1039/c9mh00664h.Search in Google Scholar

29. Jafernik, K., Ładniak, A., Blicharska, E., Czarnek, K., Ekiert, H., Wiącek, A. E., Szopa, A. Chitosan-based nanoparticles as effective drug delivery systems—a review. Molecules 2023, 28, 1963; https://doi.org/10.3390/molecules28041963.Search in Google Scholar PubMed PubMed Central

30. Champion, J. A., Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 4930–4934; https://doi.org/10.1073/pnas.0600997103.Search in Google Scholar PubMed PubMed Central

31. Champion, J. A., Katare, Y. K., Mitragotri, S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Controlled Release 2007, 121, 3–9; https://doi.org/10.1016/j.jconrel.2007.03.022.Search in Google Scholar PubMed PubMed Central

32. Nikitin, A., Khramtsov, M., Garanina, A., Mogilnikov, P., Sviridenkova, N., Shchetinin, I., Savchenko, A., Abakumov, M., Majouga, A. Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia. J. Magn. Magn. Mater. 2019, 469, 443–449; https://doi.org/10.1016/j.jmmm.2018.09.014.Search in Google Scholar

33. Reyes-Ortega, F., Checa Fernández, B. L., Delgado, A. V., Iglesias, G. R. Hyperthermia-triggered doxorubicin release from polymer-coated magnetic nanorods. Pharmaceutics 2019, 11, 517; https://doi.org/10.3390/pharmaceutics11100517.Search in Google Scholar PubMed PubMed Central

34. Ayyanaar, S., Balachandran, C., Bhaskar, R. C., Kesavan, M. P., Aoki, S., Raja, R. P., Rajesh, J., Webster, T. J., Rajagopal, G. ROS-responsive chitosan coated magnetic iron oxide nanoparticles as potential vehicles for targeted drug delivery in cancer therapy. Int. J. Nanomed. 2020, 15, 3333; https://doi.org/10.2147/ijn.s249240.Search in Google Scholar PubMed PubMed Central

35. Taran, Z., Yektaniroumand Digehsaraei, S., Salouti, M., Amini, B., Mahmazi, S., Kalantari, M. Methotrexate loaded in alginate beads for controlled drug release against breast cancer. Gene 2023, 851, 146941; https://doi.org/10.1016/j.gene.2022.146941.Search in Google Scholar PubMed

36. Liu, Z., Wang, K., Peng, X., Zhang, L. Chitosan-based drug delivery systems: current strategic design and potential application in human hard tissue repair. Eur. Polym. J. 2022, 166, 110979; https://doi.org/10.1016/j.eurpolymj.2021.110979.Search in Google Scholar

37. Li, J., Cai, C., Li, J., Li, J., Li, J., Sun, T., Wang, L., Wu, H., Yu, G. Chitosan-based nanomaterials for drug delivery. Molecules 2018, 23, 2661; https://doi.org/10.3390/molecules23102661.Search in Google Scholar PubMed PubMed Central

38. Kurczewska, J. Chitosan-based nanoparticles with optimized parameters for targeted delivery of a specific anticancer drug—a comprehensive review. Pharmaceutics 2023, 15, 503; https://doi.org/10.3390/pharmaceutics15020503.Search in Google Scholar PubMed PubMed Central

39. Bernkop-Schnürch, A., Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012, 81, 463–469; https://doi.org/10.1016/j.ejpb.2012.04.007.Search in Google Scholar PubMed

40. Ekinci, M., Koksal-Karayildirim, C., Ilem-Ozdemir, D. Radiolabeled methotrexate loaded chitosan nanoparticles as imaging probe for breast cancer: biodistribution in tumor-bearing mice. J. Drug Delivery Sci. Technol. 2023, 80, 104146; https://doi.org/10.1016/j.jddst.2022.104146.Search in Google Scholar

41. Maksimovic, V., Pavlovic-Popovic, Z., Vukmirovic, S., Cvejic, J., Mooranian, A., Al-Salami, H., Mikov, M., Golocorbin-Kon, S. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol. Biol. Rep. 2020, 47, 4699–4708; https://doi.org/10.1007/s11033-020-05481-9.Search in Google Scholar PubMed

42. Tian, J., Chen, T., Huang, B., Liu, Y., Wang, C., Cui, Z., Xu, H., Li, Q., Zhang, W., Liang, Q. Inflammation specific environment activated methotrexate-loaded nanomedicine to treat rheumatoid arthritis by immune environment reconstruction. Acta Biomater. 2023, 157, 367–380; https://doi.org/10.1016/j.actbio.2022.12.007.Search in Google Scholar PubMed

43. Salem, H. F., El-Maboud, A., Mohamed, M., Said, A. S., Salem, M. N., Sabry, D., El-Ghafar, O. A. M. A., Hussein, R. R. S. Nano methotrexate versus methotrexate in targeting rheumatoid arthritis. Pharmaceuticals 2023, 16, 60; https://doi.org/10.3390/ph16010060.Search in Google Scholar PubMed PubMed Central

44. Alqarni, A. M., Zeidler, M. P. How does methotrexate work? Biochem. Soc. Trans. 2020, 48, 559–567; https://doi.org/10.1042/bst20190803.Search in Google Scholar

45. Taghizadeh, S.-M., Ebrahiminezhad, A., Ghoshoon, M. B., Dehshahri, A., Berenjian, A., Ghasemi, Y. Magnetic immobilization of Pichia pastoris cells for the production of recombinant human serum albumin. Nanomaterials 2020, 10, 111; https://doi.org/10.3390/nano10010111.Search in Google Scholar PubMed PubMed Central

46. Karami-Darehnaranji, M., Taghizadeh, S.-M., Mirzaei, E., Berenjian, A., Ebrahiminezhad, A. Size tuned synthesis of FeOOH nanorods toward self-assembled nanoarchitectonics. Langmuir 2020, 37, 115–123; https://doi.org/10.1021/acs.langmuir.0c02466.Search in Google Scholar PubMed

47. Karami-Darehnaranji, M., Taghizadeh, S.-M., Mirzaei, E., Heidari, R., Berenjian, A., Ebrahiminezhad, A. Bio-assisted synthesis of food-grade FeOOH nanoellipsoids as promising iron supplements for food fortification. Appl. Food Biotechnol. 2020, 8, 71–77.Search in Google Scholar

48. Kuo, C.-H., Liu, Y.-C., Chang, C.-M. J., Chen, J.-H., Chang, C., Shieh, C.-J. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr. Polym. 2012, 87, 2538–2545; https://doi.org/10.1016/j.carbpol.2011.11.026.Search in Google Scholar

49. Islam, M. S., Haque, P., Rashid, T. U., Khan, M. N., Mallik, A. K., Khan, M. N. I., Rahman, M. M. Core–shell drug carrier from folate conjugated chitosan obtained from prawn shell for targeted doxorubicin delivery. J. Mater. Sci.: Mater. Med. 2017, 28, 55; https://doi.org/10.1007/s10856-017-5859-x.Search in Google Scholar PubMed

50. Ferreira, J. A., Daniel-da-Silva, A. L., Alves, R. M., Duarte, D., Vieira, I., Santos, L. L., Vitorino, R., Amado, F. Synthesis and optimization of lectin functionalized nanoprobes for the selective recovery of glycoproteins from human body fluids. Anal. Chem. 2011, 83, 7035–7043; https://doi.org/10.1021/ac200916j.Search in Google Scholar PubMed

51. Ali, E. M., Elashkar, A. A., El-Kassas, H. Y., Salim, E. I. Methotrexate loaded on magnetite iron nanoparticles coated with chitosan: biosynthesis, characterization, and impact on human breast cancer MCF-7 cell line. Int. J. Biol. Macromol. 2018, 120, 1170–1180; https://doi.org/10.1016/j.ijbiomac.2018.08.118.Search in Google Scholar PubMed

52. Mohammadi-Samani, S., Miri, R., Salmanpour, M., Khalighian, N., Sotoudeh, S., Erfani, N. Preparation and assessment of chitosan-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate. Res. Pharm. Sci. 2013, 8, 25–33.Search in Google Scholar

53. Bruckmann, F. d. S., Rossato Viana, A., Tonel, M. Z., Fagan, S. B., Garcia, W. J. d. S., Oliveira, A. H. d., Dorneles, L. S., Roberto Mortari, S., Silva, W. L. d., Silva, I. Z. d., Rhoden, C. R. B. Influence of magnetite incorporation into chitosan on the adsorption of the methotrexate and in vitro cytotoxicity. Environ. Sci. Pollut. Res. 2022, 29, 70413–70434; https://doi.org/10.1007/s11356-022-20786-x.Search in Google Scholar PubMed

54. Arora, N., Thangavelu, K., Karanikolos, G. N. Bimetallic nanoparticles for antimicrobial applications. Front. Chem. 2020, 8, 412; https://doi.org/10.3389/fchem.2020.00412.Search in Google Scholar PubMed PubMed Central

55. Jadhav, S. A., Patil, A. H., Thoravat, S. S., Patil, V. S., Patil, P. S. A brief overview of antimicrobial nanotextiles prepared by in situ synthesis and deposition of silver nanoparticles on cotton. Nanobiotechnol. Rep. 2021, 16, 543–550; https://doi.org/10.1134/s2635167621040170.Search in Google Scholar

56. Kasparis, G., Erdocio, A. S., Tuffnell, J. M., Thanh, N. T. K. Synthesis of size-tuneable β-FeOOH nanoellipsoids and a study of their morphological and compositional changes by reduction. CrystEngComm 2019, 21, 1293–1301; https://doi.org/10.1039/c8ce01778f.Search in Google Scholar

57. Tang, B., Wang, G., Zhuo, L., Ge, J., Cui, L. Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods. Inorg. Chem. 2006, 45, 5196–5200; https://doi.org/10.1021/ic060097b.Search in Google Scholar PubMed

58. Chaudhari, N. K., Yu, J.-S. Size control synthesis of uniform β-FeOOH to high coercive field porous magnetic α-Fe2O3 nanorods. J. Phys. Chem. C 2008, 112, 19957–19962; https://doi.org/10.1021/jp808589y.Search in Google Scholar

59. Yue, J., Jiang, X., Yu, A. Experimental and theoretical study on the β-FeOOH nanorods: growth and conversion. J. Nanopart. Res. 2011, 13, 3961–3974; https://doi.org/10.1007/s11051-011-0320-4.Search in Google Scholar

60. Rosenholm, J. M., Zhang, J., Sun, W., Gu, H. Large-pore mesoporous silica-coated magnetite core-shell nanocomposites and their relevance for biomedical applications. Microporous Mesoporous Mater. 2011, 145, 14–20; https://doi.org/10.1016/j.micromeso.2011.04.022.Search in Google Scholar

61. Tagizadeh, S.-M., Ebrahiminezhad, A., Ghoshoon, M. B., Dehshahri, A., Berenjian, A., Ghasemi, Y. Impacts of magnetic immobilization on the growth and metabolic status of recombinant Pichia pastoris. Mol. Biotechnol. 2022, 64, 320–329; https://doi.org/10.1007/s12033-021-00420-w.Search in Google Scholar PubMed

62. Taghizadeh, S. M., Berenjian, A., Chew, K. W., Show, P. L., Mohd Zaid, H. F., Ramezani, H., Ghasemi, Y., Raee, M. J., Ebrahiminezhad, A. Impact of magnetic immobilization on the cell physiology of green unicellular algae Chlorella vulgaris. Bioengineered 2020, 11, 141–153; https://doi.org/10.1080/21655979.2020.1718477.Search in Google Scholar PubMed PubMed Central

63. Taghizadeh, S.-M., Berenjian, A., Zare, M., Ebrahiminezhad, A. New perspectives on iron-based nanostructures. Processes 2020, 8, 1128; https://doi.org/10.3390/pr8091128.Search in Google Scholar

64. Alemi-Tameh, F., Safaei-Ghomi, J., Mahmoudi-Hashemi, M., Teymuri, R. A comparative study on the catalytic activity of Fe3O4@ SiO2–SO3H and Fe3O4@ SiO2–NH2 nanoparticles for the synthesis of spiro [chromeno [2, 3-c] pyrazole-4, 3′-indoline]-diones under mild conditions. Res. Chem. Intermed. 2016, 42, 6391–6406; https://doi.org/10.1007/s11164-016-2470-6.Search in Google Scholar

65. Ebrahiminezhad, A., Ghasemi, Y., Rasoul-Amini, S., Barar, J., Davaran, S. Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull. Korean Chem. Soc. 2012, 33, 3957–3962; https://doi.org/10.5012/bkcs.2012.33.12.3957.Search in Google Scholar

66. Agaciak, P., Yahiaoui, S., Djabourov, M., Lasuye, T. Dehydration and drying poly(vinyl)chloride (PVC) porous grains: 2. Thermogravimetric analysis and numerical simulations. Colloids Surf., A 2015, 470, 120–129; https://doi.org/10.1016/j.colsurfa.2015.01.020.Search in Google Scholar

67. Ebrahiminezhad, A., Najafipour, S., Kouhpayeh, A., Berenjian, A., Rasoul-Amini, S., Ghasemi, Y. Facile fabrication of uniform hollow silica microspheres using a novel biological template. Colloids Surf., B 2014, 118, 249–253; https://doi.org/10.1016/j.colsurfb.2014.03.052.Search in Google Scholar PubMed

68. Kahdestani, S. A., Shahriari, M. H., Abdouss, M. Synthesis and characterization of chitosan nanoparticles containing teicoplanin using sol–gel. Polym. Bull. 2021, 78, 1133–1148; https://doi.org/10.1007/s00289-020-03134-2.Search in Google Scholar

69. Dey, S. C., Al-Amin, M., Rashid, T. U., Sultan, M. Z., Ashaduzzaman, M., Sarker, M., Shamsuddin, S. Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red. Int. J. Latest Res. Eng. Technol. 2016, 2, 52–62.Search in Google Scholar

70. Ahmad, I., Zandvliet, H. J., Kooij, E. S. Shape-induced separation of nanospheres and aligned nanorods. Langmuir 2014, 30, 7953–7961; https://doi.org/10.1021/la500980j.Search in Google Scholar PubMed

71. Fang, X.-L., Li, Y., Chen, C., Kuang, Q., Gao, X.-Z., Xie, Z.-X., Xie, S. Y., Huang, R. B., Zheng, L. S. pH-induced simultaneous synthesis and self-assembly of 3D layered β-FeOOH nanorods. Langmuir 2010, 26, 2745–2750; https://doi.org/10.1021/la902765p.Search in Google Scholar PubMed

72. Peng, B., Li, G., Li, D., Dodson, S., Zhang, Q., Zhang, J., Lee, Y. H., Demir, H. V., Yi Ling, X., Xiong, Q. Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 2013, 7, 5993–6000; https://doi.org/10.1021/nn401685p.Search in Google Scholar PubMed

73. Xie, Y., Guo, S., Guo, C., He, M., Chen, D., Ji, Y., Chen, Z., Wu, X., Liu, Q., Xie, S. Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism. Langmuir 2013, 29, 6232–6241; https://doi.org/10.1021/la400736b.Search in Google Scholar PubMed

74. Xie, Y., Guo, S., Ji, Y., Guo, C., Liu, X., Chen, Z., Wu, X., Liu, Q. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa (ethylene glycol) alkanethiol. Langmuir 2011, 27, 11394–11400; https://doi.org/10.1021/la202320k.Search in Google Scholar PubMed

75. Cockell, C. S., Jones, H. L. Advancing the case for microbial conservation. Oryx 2009, 43, 520–526; https://doi.org/10.1017/s0030605309990111.Search in Google Scholar

76. Moradi, S., Najjar, R., Hamishehkar, H., Lotfi, A. Triple-responsive drug nanocarrier: magnetic core-shell nanoparticles of Fe3O4@poly(N-isopropylacrylamide)-grafted-chitosan, synthesis and in vitro cytotoxicity evaluation against human lung and breast cancer cells. J. Drug Delivery Sci. Technol. 2022, 72, 103426; https://doi.org/10.1016/j.jddst.2022.103426.Search in Google Scholar

77. Xi, J., An, L., Huang, Y., Jiang, J., Wang, Y., Wei, G., Xu, Z., Fan, L., Gao, L. Ultrasmall FeS2 nanoparticles-decorated carbon spheres with laser-mediated ferrous ion release for antibacterial therapy. Small 2021, 17, 2005473; https://doi.org/10.1002/smll.202005473.Search in Google Scholar PubMed

78. Azizi-Lalabadi, M., Garavand, F., Jafari, S. M. Incorporation of silver nanoparticles into active antimicrobial nanocomposites: release behavior, analyzing techniques, applications and safety issues. Adv. Colloid Interface Sci. 2021, 293, 102440; https://doi.org/10.1016/j.cis.2021.102440.Search in Google Scholar PubMed

79. Rahimi, M., Safa, K. D., Alizadeh, E., Salehi, R. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J. Chem. 2017, 41, 3177–3189; https://doi.org/10.1039/c6nj04107h.Search in Google Scholar

80. Yu, P., Xia, X.-M., Wu, M., Cui, C., Zhang, Y., Liu, L., Wu, B., Wang, C. X., Zhang, L. J., Zhou, X., Zhuo, R. X., Huang, S. W. Folic acid-conjugated iron oxide porous nanorods loaded with doxorubicin for targeted drug delivery. Colloids Surf., B 2014, 120, 142–151; https://doi.org/10.1016/j.colsurfb.2014.05.018.Search in Google Scholar PubMed

81. Wu, P. C., Wang, W. S., Huang, Y. T., Sheu, H. S., Lo, Y. W., Tsai, T. L., Shieh, D., Yeh, C. Porous iron oxide based nanorods developed as delivery nanocapsules. Chem. Eur. J. 2007, 13, 3878–3885; https://doi.org/10.1002/chem.200601372.Search in Google Scholar PubMed

82. Ebrahiminezhad, A., Rasoul-Amini, S., Kouhpayeh, A., Davaran, S., Barar, J., Ghasemi, Y. Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Curr. Nanosci. 2015, 11, 113–119; https://doi.org/10.2174/1573413710666140911224743.Search in Google Scholar

83. Al Faraj, A., Shaik, A. P., Shaik, A. S. Effect of surface coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology 2015, 9, 825–834; https://doi.org/10.3109/17435390.2014.980450.Search in Google Scholar PubMed

84. Abdellatif, A. A., Alsowinea, A. F. Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnol. Rev. 2021, 10, 1941–1977; https://doi.org/10.1515/ntrev-2021-0115.Search in Google Scholar

85. Shi, S.-F., Jia, J.-F., Guo, X.-K., Zhao, Y.-P., Chen, D.-S., Guo, Y.-Y., Cheng, T., Zhang, X.-L. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells. Int. J. Nanomed. 2012, 7, 5593–5602; https://doi.org/10.2147/ijn.s34348.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0389).


Received: 2023-10-12
Accepted: 2023-11-08
Published Online: 2023-11-30
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2023-0389/html
Scroll to top button