Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 28, 2018

Micellar Supported Ultrafiltration of Malachite Green: Experimental Verification of Theoretical Approach

  • Mohib Ullah , Luqman Ali Shah , Murtaza Sayed , Muhammad Siddiq EMAIL logo and Noor Ul Amin

Abstract

This study pertains to theoretical aspect of membrane and surfactant supported ultrafiltration technique followed by experimental evaluation of rejection percentage (R%) and permeate flux (J). The organic dye malachite green (MG) was removed from water samples with help of micellar solution of sodium dodecyl sulfate (SDS) surfactant on account of effective surfactant-dye interaction. The MG removal from water was result of electrostatic force of attraction between Stern layer of SDS micelles and cationic MG in addition to hydrophobic-hydrophobic interaction. The regenerated cellulose membrane was used to retain enhanced MG-SDS micellar complex from polluted water in stirred ultrafiltration cell. R% of MG increases from 79.3%, 77%, 76% to 97.5%, 95%, 90% for 0.01, 0.1 and 0.2 mM concentrations, respectively. “J” decreases throughout the experiment on account of membrane plugging or concentration polarization. Hydrodynamic radius (Rh) of SDS surfactant was also determined at its post micellar concentrations by dynamic laser light scattering (DLLS) that shows high rejection percentage with increased Rh values.

Acknowledgements

The authors acknowledge Pakistan Science Foundation (PSF) for financial support.

References

1. T. Ito, Y. Adachi, Y. Yamanashi, Y. Shimada, Water Res. 100 (2016) 458.10.1016/j.watres.2016.05.050Search in Google Scholar PubMed

2. T. Watermann, D. Sebastiani, Z. Phys. Chem. 232 (2018) 989.10.1515/zpch-2017-1011Search in Google Scholar

3. I. Šafařı́k, M. Šafařı́ková, Water Res. 36 (2002) 196.10.1016/S0043-1354(01)00243-3Search in Google Scholar PubMed

4. J. Fan, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Chemosphere 191 (2018) 315.10.1016/j.chemosphere.2017.10.042Search in Google Scholar PubMed

5. W. Sun, C. Zhang, J. Chen, B. Zhang, H. Zhang, Y. Zhang, L. Chen, J. Hazard. Mater. 324 (2017) 739.10.1016/j.jhazmat.2016.11.052Search in Google Scholar PubMed

6. D. Ghernaout, A. I. Al-Ghonamy, A. Boucherit, B. Ghernaout, M. W. Naceur, N. A. Messaoudene, M. Aichouni, A. A. Mahjoubi, N. A. Elboughdiri, Am. J. Environ. Prot. 4 (2015) 1.10.11648/j.ajeps.s.2015040501.11Search in Google Scholar

7. R. Dewil, D. Mantzavinos, I. Poulios, M. A. Rodrigo, J. Environ. Manage. 195 (2017) 93.10.1016/j.jenvman.2017.04.010Search in Google Scholar PubMed

8. S. Fudala-Ksiazek, M. Sobaszek, A. Luczkiewicz, A. Pieczynska, A. Ofiarska, A. Fiszka-Borzyszkowska, M. Sawczak, M. Ficek, R. Bogdanowicz, E. M. Siedlecka, Chem. Eng. J. 334 (2018) 1074.10.1016/j.cej.2017.09.196Search in Google Scholar

9. M. Sayed, P. Fu, L. A. Shah, H. M. Khan, J. Nisar, M. Ismail, P. Zhang, J. Phys. Chem. A 120 (2016) 118.10.1021/acs.jpca.5b10502Search in Google Scholar PubMed

10. M. Sayed, L. A. Shah, J. A. Khan, N. S. Shah, J. Nisar, H. M. Khan, P. Zhang, A. R. Khan, J. Phys. Chem. A. 120 (2016) 9916.10.1021/acs.jpca.6b09719Search in Google Scholar PubMed

11. S. Yaqoob, F. Ullah, S. Mehmood, T. Mahmood, M. Ullah, A. Khattak, M. A. Zeb, J. Water Reuse Desal. (2017). DOI: 10.2166/wrd.2017.163.10.2166/wrd.2017.163Search in Google Scholar

12. M. Sayed, J. A. Khan, L. A. Shah, N. S. Shah, H. M. Khan, F. Rehman, A. R. Khan, A. M. Khan, Environ. Sci. Pollut. Res. Int. 23 (2016) 13155.10.1007/s11356-016-6475-xSearch in Google Scholar PubMed

13. A. Salima, B. Benaouda, B. Noureddine, L. Duclaux, Water Res. 47 (2013) 3375.10.1016/j.watres.2013.03.038Search in Google Scholar PubMed

14. D. Mehta, S. Mazumdar, S. Singh, Journal of Water Process Engineering 7 (2015) 244.10.1016/j.jwpe.2015.07.001Search in Google Scholar

15. Y. Cui, X. Y. Liu, T. S. Chung, M. Weber, C. Staudt, C. Maletzko, Water Res. 91 (2016) 104.10.1016/j.watres.2016.01.001Search in Google Scholar PubMed

16. L. A. Shah, M. Sayed, M. Fayaz, I. Bibi, M. Nawaz, M. Siddiq, Nanotechnology for Environmental Engineering 2 (2017) 14.10.1007/s41204-017-0026-7Search in Google Scholar

17. L. A. Shah, A. Haleem, M. Sayed, M. Siddiq, J. Environ. Chem. Eng. 4 (2016) 3492.10.1016/j.jece.2016.07.029Search in Google Scholar

18. J. D. Roach, D. Tush, Water Res. 42 (2008) 1204.10.1016/j.watres.2007.09.003Search in Google Scholar PubMed

19. J. D. Roach, J. H. Zapien, Water Res. 43 (2009) 4751.10.1016/j.watres.2009.08.007Search in Google Scholar PubMed

20. M. A. Khosa, S. S. Shah, J. Dispersion Sci. Technol. 32 (2011) 1002.10.1080/01932691.2010.497428Search in Google Scholar

21. J. Chen, J. Mao, X. Mo, J. Hang, M. Yang, Colloids Surf. A Physicochem. Eng. Asp. 345 (2009) 231.10.1016/j.colsurfa.2009.05.015Search in Google Scholar

22. N. Pourreza, S. Elhami, Anal. Chim. Acta 596 (2007) 62.10.1016/j.aca.2007.05.042Search in Google Scholar PubMed

23. R. Rajagopalan, P. C. Hiemenz, Principles of colloid and surface chemistry. 3e édition, Marcel Dekker, New-York, ISBN 0, 8247 (1998), p. 8.Search in Google Scholar

24. M. A. Khosa, S. S. Shah, X. Feng, Sep. Sci. Technol. 48 (2013) 1315.10.1080/01496395.2012.740124Search in Google Scholar

25. M. A. Khosa, S. S. Shah, M. F. Nazar, J. Disper. Sci. Technol. 32 (2011) 260.10.1080/01932691003659171Search in Google Scholar

Received: 2017-11-05
Accepted: 2018-03-27
Published Online: 2018-04-28
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2017-1068/html
Scroll to top button