Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 18, 2017

Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity

  • Tobias Watermann and Daniel Sebastiani EMAIL logo

Abstract

We investigate liquid water confined within nanoscale cellulose slabs by means of molecular dynamics simulations. Depending on the construction of the cellulose–water interface, two different surface structures with distinct levels of hydrophilicity are exposed to the water. The different philicities are reflected in the response of the water phase to this geometric confinement, both in terms of the density profile and in the strength of the aqueous hydrogen bonding network. At the smooth surface cut along the (010) axis of the cellulose crystal, water shows typical properties of a hydrophilic confinement: the density shows fluctuations that disappear further away from the wall, the water molecules orient themselves and the coordination numbers increases at the interface. As a consequence, the water becomes “harder” at the interface, with a considerably increased local ordering. At the zigzag-shaped surface along the (111) axis, the degree of hydrophilicity is reduced, and only small effects can be seen: the density shows weak fluctuations, and the orientation of the water molecules is closer to that of bulk water than to the smooth surface. The local coordination numbers remains constant over the whole confinement. Our work shows that the nature of the exposed cellulose interface has a strong influence on how the structure of adjacent water is modified. The different ways of surface construction yield distinct degrees of hydrophilicity and spatial accessibility regarding the hydrogen bond network, resulting in a notably different interfacial water structure.

Acknowledgement

This work has been supported by the German Research Foundation (DFG) within the Forschergruppe FOR1583 (grant number Se 1008/8-2). Computing infrastructure was provided by the HLRS computing center Stuttgart (Germany).

References

1. J. F. Matthews, C. E. Skopec, P. E. Mason, P. Zuccato, R. W. Torget, J. Sugiyama, M. E. Himmel, J. W. Brady, Carbohydr. Res. 341 (2006) 138.10.1016/j.carres.2005.09.028Search in Google Scholar PubMed

2. M. Bergenstråhle, L. A. Berglund, K. Mazeau, J. Phys. Chem. B 111 (2007) 9138.10.1021/jp072258iSearch in Google Scholar PubMed

3. A. P. Heiner, J. Sugiyama, O. Teleman, Carbohydr. Res. 273 (1995) 207.10.1016/0008-6215(95)00103-ZSearch in Google Scholar

4. Y. Nishiyama, G. P. Johnson, A. D. French, V. T. Forsyth, P. Langan, Biomacromolecules 9 (2008) 3133.10.1021/bm800726vSearch in Google Scholar PubMed

5. R. J. Maurer, A. F. Sax, V. Ribitsch, Cellulose 20 (2013) 25.10.1007/s10570-012-9835-9Search in Google Scholar

6. A. C. O’Sullivan, Cellulose 4 (1997) 173.10.1023/A:1018431705579Search in Google Scholar

7. J. A. Hadden, A. D. French, R. J. Woods, Biopolymers 99 (2013) 746.10.1002/bip.22279Search in Google Scholar PubMed PubMed Central

8. A. P. Heiner and O. Teleman, Langmuir 13 (1997) 511.10.1021/la960886dSearch in Google Scholar

9. M. Bergenstråhle, J. Wohlert, P. T. Larsson, K. Mazeau, L. A. Berglund, J. Phys. Chem. B 112 (2008) 2590.10.1021/jp074641tSearch in Google Scholar PubMed

10. K. Mazeau, L. Heux, J. Phys. Chem. B 107 (2003) 2394.10.1021/jp0219395Search in Google Scholar

11. Y. Li, M. Lin, J. W. Davenport, J. Phys. Chem. C 115 (2011) 11533.10.1021/jp2006759Search in Google Scholar

12. R. H. Newman, T. C. Davidson, Cellulose 11 (2004) 23.10.1023/B:CELL.0000014778.49291.c6Search in Google Scholar

13. F. Tanaka, N. Fukui, Cellulose 11 (2004) 33.10.1023/B:CELL.0000014769.01795.7fSearch in Google Scholar

14. A. P. Heiner, L. Kuutti, O. Teleman, Carbohydr. Res. 306 (1998) 205.10.1016/S0008-6215(97)10053-2Search in Google Scholar

15. T. Yui, S. Nishimura, S. Akiba, S. Hayashi, Carbohydr. Res. 341 (2006) 2521.10.1016/j.carres.2006.04.051Search in Google Scholar PubMed

16. J. Geske, B. Drossel, M. Vogel, J. Chem. Phys. 146 (2017) 134502.10.1063/1.4979341Search in Google Scholar PubMed

17. X. Y. Guo, T. Watermann, S. Keane, C. Allolio, D. Sebastiani, Z. Phys. Chem. 226 (2012) 1415.10.1524/zpch.2012.0290Search in Google Scholar

18. C. Allolio, F. Klameth, M. Vogel, D. Sebastiani, ChemPhysChem. 18 (2014) 3955.10.1002/cphc.201402371Search in Google Scholar PubMed

19. X. Guo, T. Watermann, D. Sebastiani, J. Phys. Chem. B 118 (2014) 10207.10.1021/jp505203tSearch in Google Scholar PubMed

20. Y. Xu, T. Watermann, H.-H. Limbach, T. Gutmann, D. Sebastiani, G. Buntkowsky, Phys. Chem. Chem. Phys. 16 (2014) 9327.10.1039/C4CP00808ASearch in Google Scholar PubMed

21. A. Hoffmann, D. Sebastiani, E. Sugiono, S. Yun, K. S. Kim, H. W. Spiess, I. Schnell, Chem. Phys. Lett. 388 (2004) 164.10.1016/j.cplett.2004.02.098Search in Google Scholar

22. A. Bedane, H. Xiao, M. Eic, M. Farmahini-Farahani, Appl. Surf. Sci. 351 (2015) 725.10.1016/j.apsusc.2015.06.022Search in Google Scholar

23. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 26 (2005) 1781.10.1002/jcc.20289Search in Google Scholar PubMed PubMed Central

24. A. D. MacKerell, D. Bashford, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102 (1998) 3586.10.1021/jp973084fSearch in Google Scholar PubMed

25. A. D. MacKerell, J. Comput. Chem. 25 (2004) 1584.10.1002/jcc.20082Search in Google Scholar PubMed

26. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14 (1996) 33.10.1016/0263-7855(96)00018-5Search in Google Scholar PubMed

27. T. C. F. Gomes, M. S. Skaf, J. Comp. Chem. 33 (2012) 1338.10.1002/jcc.22959Search in Google Scholar PubMed

28. M. Iannuzzi, M. Parrinello, Phys. Rev. Lett. 93 (2004) 25901.10.1103/PhysRevLett.93.025901Search in Google Scholar PubMed

29. M. Iannuzzi, J. Chem. Phys. 124 (2006) 204710.10.1063/1.2202323Search in Google Scholar PubMed

30. G. A. Ludueña, T. D. Kühne, D. Sebastiani, Chem. Mater. 23 (2011) 1424.10.1021/cm102674uSearch in Google Scholar

31. D. Sebastiani, G. R. Goward, I. Schnell, H. W. Spiess, J. Mol. Struc. Theochem. 625 (2003) 283.10.1016/S0166-1280(03)00030-7Search in Google Scholar

32. M. Rosenstihl, K. Kämpf, F. Klameth, M. Sattig, M. Vogel, J. Non. Cryst. Solids 407 (2015) 449.10.1016/j.jnoncrysol.2014.08.040Search in Google Scholar

33. B. Kuttich, A.-K. Grefe, H. Kröling, S. Schabel, B. Stühn, RSC Adv. 6 (2016) 32389.10.1039/C6RA01320ASearch in Google Scholar

34. J. Geske, M. Vogel, Mol. Simul. 43 (2017) 13.10.1080/08927022.2016.1221072Search in Google Scholar

35. M. F. Harrach, F. Klameth, B. Drossel, M. Vogel, J. Chem. Phys. 142 (2015).10.1063/1.4905557Search in Google Scholar PubMed

Received: 2017-07-18
Accepted: 2017-10-26
Published Online: 2017-11-18
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2017-1011/html
Scroll to top button