Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 18, 2021

Reaction of OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant

  • Olivier Holtomo EMAIL logo , Lydia Rhyman , Mama Nsangou , Ponnadurai Ramasami and Ousmanou Motapon

Abstract

In order to understand the atmospheric implication of the chlorinated hydrofluoroolefin (HFO), the geometrical structures and the IR absorption cross sections of the stereoisomers 1-chloro-3,3-difluoropropene were studied using the B3LYP/6-31G(3df) and M06-2X/6-31G(3df) methods in the gas phase. The cis-trans isomerization was assessed using the M06-2X/6-311++G(3df,p)//6-31+G(3df,p) method. The latter method was also employed for thermochemistry and the rate coefficients of the reactions of OH with the cis- and trans-isomers in the temperature ranging from 200 to 400 K. The computational method CCSD/cc-pVTZ//M06-2X/6-31+G(3df,p) was used to benchmark the rate coefficients. It turns out that, the trans-isomer is more stable than cis-isomer and the trans- to cis-isomerization is thermodynamically unfavorable. The rate coefficient follows the Gaussian law with respect to the inverse of temperature. At the global temperature of stratosphere, the calculated rate coefficients served to estimate the atmospheric lifetime along with the photochemical ozone creation potential (POCP). This yielded lifetimes of 4.31 and 7.31 days and POCPs of 3.80 and 2.23 for the cis- and trans-isomer, respectively. The radiative forcing efficiencies gave 0.0082 and 0.0152 W m−2 ppb−1 for the cis- and trans-isomer, respectively. The global warming potential approached zero for both stereoisomers at 20, 100, and 500 years time horizons.


Corresponding author: Olivier Holtomo, Department of Physics, Faculty of Science, University of Bamenda, Bambili P.O. Box 39, Cameroon; and Department of Physics, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon, e-mail:

Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2020) held on-line, 1–31 August 2020.


Award Identifier / Grant number: OEA-NET 05

  1. Research funding: The authors are grateful to the Abdus Salam ICTP for their financial support to this work through the OEA-NET 05 project.

References

[1] V. L. Orkin, L. E. Martynova, M. J. Kurylo. J. Phys. Chem. A 118, 5263 (2014), https://doi.org/10.1021/jp5018949.Search in Google Scholar PubMed

[2] T. Gierczak, M. Baasandorj, J. B. Burkholder. J. Phys. Chem. A 118, 11015 (2014), https://doi.org/10.1021/jp509127h.Search in Google Scholar PubMed

[3] L. L. Andersen, F. F. Østerstrøm, M. P. Sulbaek Andersen, O. J. Nielsen, T. J. Wallington. Chem. Phys. Lett. 639, 289 (2015), https://doi.org/10.1016/j.cplett.2015.09.008.Search in Google Scholar

[4] D. J. Wuebbles, D. Wang, K. O. Patten, S. C. Olsen. Geophys. Res. Lett. 40, 4767 (2013), https://doi.org/10.1002/grl.50908.Search in Google Scholar

[5] O. Holtomo, O. Motapon, M. Nsangou. J. Phys. Chem. A 123, 10437 (2019), https://doi.org/10.1021/acs.jpca.9b08089.Search in Google Scholar PubMed

[6] M. P. Sulbaek Andersen, E. J. K. Nilsson, O. J. Nielsen, M. S. Johnson, M. D. Hurley, T. J. Wallington. J. Photochem. Photobiol. Chem. 199, 92 (2008), https://doi.org/10.1016/j.jphotochem.2008.05.013.Search in Google Scholar

[7] B. Baidya, A. K. Chandra. Chem. Phys. Lett. 749, 137409 (2020), https://doi.org/10.1016/j.cplett.2020.137409.Search in Google Scholar

[8] F. Jabeen, A. Kumar, B. Rajakumar. Chem. Phys. Lett. 758, 137933 (2020), https://doi.org/10.1016/j.cplett.2020.137933.Search in Google Scholar

[9] M.-Y. Li, F.-Y. Bai, X.-M. Pan. J. Mol. Graph. Model. 93, 107453 (2019), https://doi.org/10.1016/j.jmgm.2019.107453.Search in Google Scholar PubMed

[10] Q. Guo, N. Zhang, T. Uchimaru, L. Chen, H. Quan, J. Mizukado. Atmos. Environ. 179, 69 (2018), https://doi.org/10.1016/j.atmosenv.2018.02.005.Search in Google Scholar

[11] M. Balaganesh, B. Rajakumar. J. Mol. Graph. Model. 48, 60 (2014).10.1016/j.jmgm.2013.12.003Search in Google Scholar PubMed

[12] V. L. Orkin, R. E. Huie, M. J. Kurylo. J. Phys. Chem. A 101, 9118 (1997), https://doi.org/10.1021/jp971994r.Search in Google Scholar

[13] Ø. Hodnebrog, M. Etminan, J. S. Fuglestvedt, G. Marston, C. J. Nielsen, K. P. Shine, T. J. Wallington. Rev. Geophys. 51, 300 (2013), https://doi.org/10.1002/rog.20013.Search in Google Scholar

[14] S. Pinnock, M. D. Hurley, K. P. Shine, T. J. Wallington, T. J. Smyth. J. Geophys. Res. 100, 23227 (1995), https://doi.org/10.1029/95jd02323.Search in Google Scholar

[15] P. Blowers, D. M. Moline, K. F. Tetrault, R. R. Wheeler, S. L. Tuchawena. J. Geophys. Res. 112, D15108 (2007), https://doi.org/10.1029/2006JD008098.Search in Google Scholar

[16] I. Bravo, A. Aranda, M. D. Hurley, G. Marston, D. R. Nutt, K. P. Shine, K. Smith, T. J. Wallington. J. Geophys. Res. 115, D24317 (2010), https://doi.org/10.1029/2010JD014771.Search in Google Scholar

[17] K. Sihra, M. D. Hurley, K. P. Shine, T. J. Wallington. J. Geophys. Res. 106, 20493 (2001), https://doi.org/10.1029/2000jd900716.Search in Google Scholar

[18] A. K. Jain, B. P. Briegleb, K. Minschwaner, D. J. Wuebbles. J. Geophys. Res. 105, 20773 (2000), https://doi.org/10.1029/2000jd900241.Search in Google Scholar

[19] D. Voglozin, P. Cooper. J. Atmos. Chem. 74, 475 (2017), https://doi.org/10.1007/s10874-016-9353-5.Search in Google Scholar

[20] A. Gonzalez-Lafont, T. N. Tryong, D. G. Truhlar. J. Chem. Phys. 95, 8875 (1991).10.1063/1.461221Search in Google Scholar

[21] W. T. Duncan, R. L. Bell, T. N. Truong. J. Comput. Chem. 19, 1039 (1998), https://doi.org/10.1002/(sici)1096-987x(19980715)19:9<1039::aid-jcc5>3.0.co;2-r.10.1002/(SICI)1096-987X(19980715)19:9<1039::AID-JCC5>3.0.CO;2-RSearch in Google Scholar

[22] P. Baron. in Reaction Rate Theory and Rare Events, 227, Elsevier, ISBN:9780444563491, 1st ed. (2017).10.1016/B978-0-44-456349-1.00010-6Search in Google Scholar

[23] M. Buchowiecki, J. Vaníček. J. Chem. Phys. 132, 194106 (2010), https://doi.org/10.1063/1.3425617.Search in Google Scholar

[24] D. G. Truhlar, A. Kuppermann. J. Am. Chem. Soc. 93, 1840 (1971).10.1021/ja00737a002Search in Google Scholar

[25] D. G. Truhlar, A. Kuppermann. Chem. Phys. Lett. 9, 269 (1971), https://doi.org/10.1016/0009-2614(71)85049-2.Search in Google Scholar

[26] C. Eckart. Phys. Rev. 35, 1303 (1930), https://doi.org/10.1103/physrev.35.1303.Search in Google Scholar

[27] T. Piansawan, N. Kungwan, S. Jungsuttiwong. Comput. Theor. Chem. 1011, 65 (2013), https://doi.org/10.1016/j.comptc.2013.02.010..Search in Google Scholar

[28] R. T. Skodje, D. G. Truhlar. J. Phys. Chem. 85, 624 (1981), https://doi.org/10.1021/j150606a003.Search in Google Scholar

[29] E. Wigner. Trans. Faraday Soc. 34, 29 (1938).10.1039/tf9383400029Search in Google Scholar

[30] R. G. Derwent, M. E. Jenkin, S. M. Saunders, M. J. Pilling. Atmos. Environ. 32, 2429 (1998), https://doi.org/10.1016/s1352-2310(98)00053-3.Search in Google Scholar

[31] M. E. Jenkin. Photochemical Ozone and PAN Creation Potentials: Rationalisation and Methods of Estimation, National Environmental Technology Centre, Culham, Oxfordshire OX14 3DB, U.K (1998), AEA Technology plc. Report AEAT-4182/20150/003.Search in Google Scholar

[32] Q. Guo, N. Zhang, T. Uchimaru, L. Chen, H. Quan, J. Mizukado. Atmos. Environ. 179, 69 (2018), https://doi.org/10.1016/j.atmosenv.2018.02.005.Search in Google Scholar

[33] A. D. Beche. J. Chem. Phys. 98, 5648 (1993).10.1063/1.464913Search in Google Scholar

[34] C. T. Lee, W. T. Yang, R. G. Parr. Phys. Rev. B 37, 785 (1988), https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed

[35] Y. Zhao, D. G. Truhlar. Theor. Chem. Acc. 120, 215 (2008), https://doi.org/10.1007/s00214-007-0310-x.Search in Google Scholar

[36] Y. Zhao, N. E. Schultz, D. G. Truhlar. J. Chem. Theor. Comput. 2, 364 (2006), https://doi.org/10.1021/ct0502763.Search in Google Scholar PubMed

[37] Y. Zhao, D. G. Truhlar. J. Chem. Phys. 125, 194101 (2006), https://doi.org/10.1063/1.2370993.Search in Google Scholar PubMed

[38] B. Baidya, M. Lily, A. K. Chandra. Comput. Theor. Chem. 1119, 1 (2017), https://doi.org/10.1016/j.comptc.2017.09.012.Search in Google Scholar

[39] J. F. Stanton, R. J. Bartlett. J. Chem. Phys. 98, 7029 (1993), https://doi.org/10.1063/1.464746.Search in Google Scholar

[40] H. Koch, P. Jørgensen. J. Chem. Phys. 93, 3333 (1990), https://doi.org/10.1063/1.458814.Search in Google Scholar

[41] A. V. Marenich, C. J. Cramer, D. G. Truhlar. J. Phys. Chem. B 119, 958 (2015), https://doi.org/10.1021/jp506293w.Search in Google Scholar PubMed

[42] P. Seidler, J. Kongsted, O. Christiansen. J. Phys. Chem. A 111, 11205 (2007), https://doi.org/10.1021/jp070327n.Search in Google Scholar

[43] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, USA (2009).Search in Google Scholar

[44] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A.Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.D. Foresman, J. Fox. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT (2016).Search in Google Scholar

[45] S. Pamidighantam, S. Nakandala, E. Abeysinghe, C. Wimalasena, S. R. Yodage, Suresh. Marru, M. Pierce, Procedia Comput. Sci., 80 1927 (2016), https://doi.org/10.1016/j.procs.2016.05.535.Search in Google Scholar

[46] N. Shen, Y. Fan, S. Pamidighantam. J. Comput. Sci. 5, 576 (2014), https://doi.org/10.1016/j.jocs.2014.01.005.Search in Google Scholar

[47] R. Dooley, K. Milfeld, C. Guiang, S. Pamidighantam, G. Allen. J. Grid Comput. 4, 195 (2006), https://doi.org/10.1007/s10723-006-9043-7.Search in Google Scholar

[48] K. Milfeld, C. Guiang, S. Pamidighantam, J. Giuliani. Cluster computing through an application-oriented computational chemistry grid. In: Proceedings of the 2005 Linux Clusters: The HPC Revolution (2005).Search in Google Scholar

[49] O. Farkas, H. B. Schlegel. Phys. Chem. Chem. Phys. 4, 11 (2002), https://doi.org/10.1039/b108658h.Search in Google Scholar

[50] O. Holtomo, M. Nsangou, J. J. Fifen, O. Motapon. J. Chem. Chem. Eng. 7, 910 (2013).Search in Google Scholar

[51] M. Nsangou, J. J. Fifen, Z. Dhaouadi, S. Lahmar. J. Mol. Struc-Theochem. 862, 53 (2008), https://doi.org/10.1016/j.theochem.2008.04.028.Search in Google Scholar

[52] M-Y. Li, F-Y. Bai, X-M. Pan. J. Mol. Graph. Model. 93, 107453 (2019), https://doi.org/10.1016/j.jmgm.2019.107453.Search in Google Scholar

[53] W. T. Duncan, R. L. Bell, T. N. Truong. J. Comput. Chem. 19, 1039 (1998), https://doi.org/10.1002/(sici)1096-987x(19980715)19:9<1039::aid-jcc5>3.0.co;2-r.10.1002/(SICI)1096-987X(19980715)19:9<1039::AID-JCC5>3.0.CO;2-RSearch in Google Scholar

[54] M. Buchowiecki, J. Vaníček. J. Chem. Phys. 132, 194106 (2010), https://doi.org/10.1063/1.3425617.Search in Google Scholar

[55] D. G. Truhlar, A. Kuppermann. Chem. Phys. Lett. 9, 269 (1971), https://doi.org/10.1016/0009-2614(71)85049-2.Search in Google Scholar

[56] C. Eckart. Phys. Rev. 35, 1303 (1930), https://doi.org/10.1103/physrev.35.1303.Search in Google Scholar

[57] T. Piansawan, N. Kungwan, S. Jungsuttiwong. Comput. Theor. Chem. 1011, 65 (2013), https://doi.org/10.1016/j.comptc.2013.02.010.Search in Google Scholar

[58] R. T. Skodje, D. G. Truhlar. J. Phys. Chem. 85, 624 (1981), https://doi.org/10.1021/j150606a003.Search in Google Scholar

[59] B. K. Mishra, A. K. Chakrabartty, R. C. Deka. J. Mol. Model. 19, 3263 (2013), https://doi.org/10.1007/s00894-013-1865-1.Search in Google Scholar

[60] Q. Guo, N. Zhang, T. Uchimaru, L. Chen, H. Quan, J. Mizukado. Atmos. Environ. 179, 69 (2018), https://doi.org/10.1016/j.atmosenv.2018.02.005.Search in Google Scholar

[61] T. J. Wallington, M. P. Sulbaek Anderson, O. J. Nielson. Chemosphere 129, 135 (2015), https://doi.org/10.1016/j.chemosphere.2014.06.092.Search in Google Scholar

[62] F. A. De Leeuw. Chemosphere 27, 1313 (1993), https://doi.org/10.1016/0045-6535(93)90226-u.Search in Google Scholar

[63] Y. Andersson-Sköld, P. Grennfelt, K. Pleijel. Waste Manag. Assoc. 42, 1152 (1992), https://doi.org/10.1080/10473289.1992.10467060.Search in Google Scholar

[64] M. P. Sulbaek Andersen, T. I. Sølling, L. L. Andersen, A. Volkova, D. Hovanessian, C. Britzman, O. J. Nielsen, T. J. Wallington. Phys. Chem. Chem. Phys. 20, 27949 (2018), https://doi.org/10.1039/c8cp04903c.Search in Google Scholar

[65] R. G. Derwent, M. E. Jenkin, S. M. Saunders. Atmos. Environ. 30, 181 (1996), https://doi.org/10.1016/1352-2310(95)00303-g.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2021-0116).


Published Online: 2021-11-18
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2021-0116/html
Scroll to top button