Skip to main content
Log in

Altitude profile of the OH radical complex with water in Earth’s atmosphere: a quantum mechanical approach

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The hydroxyl radical (OH) is important in both tropospheric and stratospheric chemical processes that occur in Earth’s atmosphere. The OH radical can also strongly hydrogen-bond to form complexes with other atmospheric constituents, like water molecules. Consequently, there is potential for altered reaction dynamics/kinetics as a result of this complexation. Without direct measurements of the abundances of such complexes in Earth’s atmosphere, we have adopted a theoretical approach to determine such abundances. Electronic structures, enthalpies and free Gibbs energies of formation of OH, H2O and H2O-HO were calculated at CCSD(T) and QCISD(T) levels of theory with either 6–311++G(2d,2p) or aug-cc-pVTZ basis. Statistical thermodynamic concepts were then used to assess the abundance of the complex as function of altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. David Voglozin: Quantum calculation of Atmospherically Important radical-Molecules Complexes. PhD dissertation. Digilib.gmu.edu/jspui/bitstream/1920/8163/1/voglozin-gmu_0883E_10229.pdf, 2013

  2. Ochterski, W. Joseph, Thermochemistry in Gaussian, 2000, @Gaussian.com/g_whitepap/thermos.htm, April 19, 2000

References

  • Allodi, M.A., Dunn, M.E., Livada, J., Kirschner, N.K., Shields, C.G.: Do hydroxyl radical-water clusters, OH(H2O)n, n = 1-5, exist in the atmosphere? J. Phys. Chem. A. 110, 13283–13289 (2006)

    Article  Google Scholar 

  • Aloiso, S., Francisco, S.J.: Radical-water complexes in Earth’s atmosphere. Acc. Chem. Res. 33, 825–830 (2000)

    Article  Google Scholar 

  • Brasseur, P.G., Solomon, S.: Aeronomy of the middle atmosphere – chemistry and physics of the stratosphere and mesosphere, 3rd edn. Springer, Dordrecht (2005)

    Google Scholar 

  • Bridget, P.S., O’Donnell, A., Lester, M.I., Francisco, J.S., McCoy, A.B.: Infrared Spectrum and stability of the H2O-HO complex: experiment and theory. J. Phys. Chem. A. 114, 1529–1538 (2010)

    Google Scholar 

  • Chameides, W.L., Davis, D.D.: The free radical chemistry of cloud droplets and its impact upon the composition of rain. J. Geophys. Res. 87, (1982). doi:10.1029/JC087iC07p04863

  • Cooper, P., Kjaergaard, G.H., Langford, V.S., McKinley, J.A., Terence, I.Q., Daniel, P.S.: Infrared measurements and calculations on H2O-HO. J. Am. Chem. Soc. 125, 6048–6049 (2003)

    Article  Google Scholar 

  • Curtiss, A.L., Raghavachari, K., Redfern, C.P., Rassolov, V., Pople, A.J.: Gaussian-3 (G3) theory for molecules containing first and second rows atoms. J. Chem. Phys. 109, 7764 (1998)

    Article  Google Scholar 

  • Du, S., Francisco, J.S.: The OH radical-H2O molecule interaction. J. Phys. Chem. 124, 224318 (2006)

    Article  Google Scholar 

  • Dubey, M.K., Mohrschladt, R., Donahue, N.M.: Isotope specific kinetics of hydroxyl radical (OH) with water (H2O): testing models of reactivity and atmospheric fractionation. J. Phys. Chem. A. 101(8), 1494–1500 (1997)

    Article  Google Scholar 

  • Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery, Jr., A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J.: Gaussian G09, Full Serial Version; Gaussian, Inc., Wallingford (2009)

  • Isoniemi, E., Pettersson, M., Khriachtchev, L., Lundell, J., Räsänen, M.: Infrared spectroscopy of H2S and HS in rare-gas matrixes. J. Phys. Chem. A. 103, 679–685 (1999)

    Article  Google Scholar 

  • Margitan, J.J., Kaufman, F., Anderson, J.G.: The reaction of OH with CH4. Geophys. Res. Lett. (1974). doi:10.1029/GL001i002p0080

    Google Scholar 

  • McQuarrie, D.A., Simon, J.D.: Molecular Thermodynamics. University Science Books, Herndon (1999)

    Google Scholar 

  • Nizkorodov, S.A., Harper, W.W., Blackmon, B.W., Nesbitt, D.J.: Temperature dependent kinetics of the OH/HO2/O3 chain reaction by time-resolved IR laser spectroscopy. J. Phys. Chem. A. 104, 3964–3973 (2000)

    Article  Google Scholar 

  • Nozomu, K., Kenichi, T., Mitsuo, K.: Equilibrium constant of the HO2-H2O complex formation and kinetics of HO2 + HO2-H2O: implications for tropospheric chemistry. J. Geophys. Res. 111(20), D20312 (2006). doi:10.1029/2005JD006805

    Google Scholar 

  • Ohshima, Y., Sato, K., Sumiyoshi, Y., Endo, Y.: Rotational Spectrum and hydrogen bonding of the H2O-HO radical complex. J. Am. Chem. Soc. 127(4), 1108–1109 (2005)

    Article  Google Scholar 

  • Ren, J.-G., Xia, H.-L., Just, T., Dai, Y.-R.: Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett. 488, 123–132 (2001)

    Article  Google Scholar 

  • Slanger, T.G., Huestis, D.L.: The OH (ν = 9) + O3 reaction pathway. In. J. Chem. Kinet. 17(7), 713–723 (1985)

    Article  Google Scholar 

  • Storey, J.W.V., Watson, M.D., Townes, C.H.: Detection of interstellar OH in the far-infrared. Astron. J. 244, 127–130 (1981)

    Article  Google Scholar 

  • Tsuji, K., Shibuya, K.: Infrared spectroscopy and quantum chemical calculations of OH-(H2O)n complexes. J. Phys. Chem. A. 113(37), 9945–9951 (2009)

    Article  Google Scholar 

  • Vaida, V., Headrick, J.E.: Physicochemical properties of hydrated complexes in the Earth’s atmosphere. J. Phys. Chem. A. 104(23), 5401–5412 (2000)

    Article  Google Scholar 

  • Xie, Y., Schaeffer III, H.F.: Hydrogen bonding between the water molecule and the hydroxyl radical (H2O⋅HO): the global minimum. Chem. Phys. 98, 8829–8834 (1993)

    Google Scholar 

  • Zhou, Z., Qu, Y., Fu, A.F., Du, B., He, F., Gao, H.: Density functional complete study of hydrogen bonding between the water molecule and the hydroxyl radical (H2O-HO). Int. J. Quantum Chem. 89(6), 550–558 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for the effective support of the Gaussian helpdesk, particularly from Dr. Fernando R. Clemente, when dealing with the low-lying excited structure of H2O-HO (Structure 2) at triple excitation level of theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Voglozin.

Additional information

Supporting information QCISD(T) and CCSD(T) calculated geometries and normal modes frequencies of (H2O).OH, and Microsoft Excel table. This material is available free of charge upon request at: “voglozin11@gmail.com”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voglozin, D., Cooper, P. Altitude profile of the OH radical complex with water in Earth’s atmosphere: a quantum mechanical approach. J Atmos Chem 74, 475–489 (2017). https://doi.org/10.1007/s10874-016-9353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-016-9353-5

Keywords

Navigation