Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 19, 2016

Identification of selective oxidation of TiC/SiC composite with X-ray diffraction and Raman spectroscopy

  • Nicoleta Doriana Banu , Ionut Banu EMAIL logo , Marios S. Katsiotis , Anjana Tharalekshmy , Samuel Stephen , Jamie Whelan , Gisha Elizabeth Luckachan , Radu Vladea and Saeed M. Alhassan
From the journal Chemical Papers

Abstract

Open cell 3D titanium carbide/silicon carbide (TiC/SiC) composite was oxidised to titanium oxide/silicon carbide (TiO2/SiC) following different temperature profiles in a thermal gravimetric analysis (TGA) instrument in continuous air-flow and static air (oven) environments. The TiC oxidation to anatase, starting at temperatures over 450°C, was confirmed by Raman spectroscopy and X-Ray diffraction (XRD). By increasing the temperature, the mass fraction of anatase diminished, while the mass fraction of rutile increased. SiC oxidation started at 650°C when a mixture of TiO2/SiO2/SiC could be observed by Raman, XRD and HRTEM.

Acknowledgements

The authors would like to acknowledge the financial support received from the Abu Dhabi Oil Refining Company (TAKREER) and from the Department of Chemical Engineering at The Petroleum Institute, Abu Dhabi, United Arab Emirates.

References

Basile, F., Del Gallo, P., Fornasari, G., Gary, D., Rosetti, V., & Vaccari, A. (2007). SiC as stable high thermal conductive catalyst for enhanced SR process. Studies in Surface Science and Catalysis, 167, 313–318. 10.1016/s0167-2991(07)80150-9.Search in Google Scholar

de Tymowski, B., Liu, Y. F., Meny, C., Lefevre, C., Begin, D., Nguyen, P., Pham, C., Edouard, D., Luck, F., & Cuong, P. H. (2012). Co—Ru/SiC impregnated with ethanol as an effective catalyst for the Fischer-Tropsch synthesis. Applied Catalysis A, 419, 31-40. 10.1016/j.apcata.2012.01.004.Search in Google Scholar

Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48, 53-229. 10.1016/s0167-5729(02)00100-0.Search in Google Scholar

Duran, A., Serna, C., Fornes, V., & Navarro, J. M. F. (1986). Structural considerations about SiO2 glasses prepared by sol-gel. Journal of Non-Crystalline Solids, 82, 69-77. 10.1016/0022-3093(86)90112-2.Search in Google Scholar

Fernandez-Torres, L. C., Perry, S. S., Didziulis, S. V., & Frantz, P. P. (2002). The interaction of ammonia with transition metal carbide surfaces. Surface Science, 511, 121-132. 10.1016/s0039-6028(02)01559-5.Search in Google Scholar

Ghanem, H., Kormann, M., Gerhard, H., & Popovska, N. (2007). Processing of biomorphic porous TiO2 ceramics by chemical vapor infiltration and reaction (CVI-R) technique. Journal of the European Ceramic Society, 27, 3433-3438. 10.1016/j.jeurceramsoc.2007.02.197.Search in Google Scholar

Hu, Y., Tsai, H. L., & Huang, C. L. (2003). Effect of brookite phase on the anatase-rutile transition in titania nanoparticles. Journal of the European Ceramic Society, 23, 691-696. 10.1016/s0955-2219(02)00194-2.Search in Google Scholar

Li, G. B., Zhang, J. Z., Meng, Q. L., & Li, W. Z. (2007). Synthesis of silicon carbide films by combined implantation with sputtering techniques. Applied Surface Science, 253, 8428–8434. 10.1016/j.apsusc.2007.04.014.Search in Google Scholar

Long, H., Yang, G., Chen, A. P., Li, Y. H., & Lu, P. X. (2008). Growth and characteristics of laser deposited anatase and rutile TiO2 films on Si substrates. Thin Solid Films, 517, 745-749. 10.1016/j.tsf.2008.08.179.Search in Google Scholar

Marin, P., Ordonez, S., & Diez, F. V. (2012). Performance of silicon-carbide foams as supports for Pd-based methane combustion catalysts. Journal of Chemical Technology and Biotechnology, 87, 360-367. 10.1002/jctb.2726.Search in Google Scholar

Martoňák, R., Donadio, D., Oganov, A. R., & Parrinello, M. (2006). Crystal structure transformations in SiO2 fom classical and ab initio metadynamics. Nature Materials, 5, 623–626. 10.1038/nmat1696.Search in Google Scholar PubMed

Meinhold, G. (2010). Rutile and its applications in earth sciences. Earth-Science Reviews, 102, 1–28. 10.1016/j.earscirev. 2010.06.001.Search in Google Scholar

Merlemejean, T., Abdelmounim, E., & Quintard, P. (1995). Oxide layer on silicon carbide powder: A FT-IR investigation. Journal of Molecular Structure, 349, 105–108. 10.1016/0022-2860(95)08720-g.Search in Google Scholar

Mirabedini, A., Mirabedini, S. M., Babalou, A. A., & Pazokifard, S. (2011). Synthesis, characterization and enhanced photocatalytic activity of TiO2/SiO2 nanocomposite in an aqueous solution and acrylic-based coatings. Progress in Organic Coatings, 72, 453–460. 10.1016/j.porgcoat.2011.06.002.Search in Google Scholar

Moene, R., Tazelaar, F. W., Makkee, M., & Moulijn, J. A. (1997). Nickel-catalyzed conversion of activated carbon extrudates into high surface area silicon carbide by reactive chemical vapour deposition. Journal of Catalysis, 170, 311–324. 10.1006/jcat.1997.1782.Search in Google Scholar

Moene, R., Makkee, M., & Moulijn, J. A. (1998). High surface area silicon carbide as catalyst support characterization and stability. Applied Catalysis A, 167, 321–330. 10.1016/s0926-860x(97)00326-8.Search in Google Scholar

Nguyen, T. V., Lee, H. C., Khan, M. A., & Yang, O. B. (2007). Electrodeposition of TiO2/SiO2 nanocomposite for dye-sensitized solar cell. Solar Energy, 81, 529–534. 10.1016/j.solener.2006.07.008.Search in Google Scholar

Nguyen, P., Nhut, J. M., Edouard, D., Pham, C., Ledoux, M. J., & Pham-Huu, C. (2009). Fe2O3/β-SiC: A new high efficient catalyst for the selective oxidation of H2S into elemental sulfur. Catalysis Today, 141, 397–402. 10.1016/j.cattod.2008.10.047.Search in Google Scholar

Nguyen, P., & Pham, C. (2011). Innovative porous SiC-based materials: From nanoscopic understandings to tunable carriers serving catalytic needs. Applied Catalysis A, 391, 443–454. 10.1016/j.apcata.2010.07.054.Search in Google Scholar

Ohsaka, T., Yamaoka, S., & Shimomura, O. (1979). Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO2). Solid State Communications, 30, 345–347. 10.1016/0038-1098(79)90648-3.Search in Google Scholar

Okada, K., Yamamoto, N., Kameshima, Y., Yasumori, A., & MacKenzie, K. J. D. (2001). Effect of silica additive on the anatase-to-rutile phase transition. Journal of the American Ceramic Society, 84, 1591–1596. 10.1111/j.1151- 2916.2001.tb00882.x.Search in Google Scholar

Orendorz, A., Brodyanski, A., Losch, J., Bai, L. H., Chen, Z. H., Le, Y. K., Ziegler, C., & Gnaser, H. (2007). Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surface Science, 601, 4390–4394. 10.1016/j.susc.2007.04.127.Search in Google Scholar

Raman, V., Bhatia, G., Mishra, A. K., Bhardwaj, S., & Sood, K. N. (2006). Synthesis of silicon carbide nanofibers from pitch blended with sol-gel derived silica. Materials Letters, 60, 3906–3911. 10.1016/j.matlet.2006.03.138.Search in Google Scholar

Savio, A. K. P. D., Starikov, D., Bensaoula, A., Pillai, R., García, L. L. D., & Hernández, F. C. R. (2012). Tunable TiO2 (anatase and rutile) materials manufactured by mechanical means. Ceramics International, 38, 3529–3535. 10.1016/j.ceramint.2011.12.067.Search in Google Scholar

Schmirler, M., Glenk, F., & Etzold, B. J. M. (2011). In-situ thermal activation of carbide-derived carbon. Carbon, 49, 3679–3686. 10.1016/j.carbon.2011.05.003.Search in Google Scholar

Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., & Silva, S. R. P. (1996). Raman spectroscopy on amorphous carbon films. Journal of Applied Physics, 80, 440-447. 10.1063/1.362745.Search in Google Scholar

Shimada, S. (1996). A thermoanalytical study of oxidation of TiC by simultaneous TGA-DTA-MS analysis. Journal of Materials Science, 31, 673-677. 10.1007/bf00367884.Search in Google Scholar

Sreekantan, S., Hazan, R., & Lockman, Z. (2009). Photoactivity of anatase-rutile TiO2 nanotubes formed by anodization method. Thin Solid Films, 518, 16–21. 10.1016/j.tsf.2009.06.002.Search in Google Scholar

van der Meulen, T., Mattson, A., & Osterlund, L. (2007). A comparative study of the photocatalytic oxidation of propane on anatase, rutile and mixed-phase anatase-rutile TiO2 nanoparticles: Role of surface intermediates. Journal of Catalysis, 251, 131–144. 10.1016/j.jcat.2007.07.002.Search in Google Scholar

Wang, Q., Sun, W. Z., Jin, G. Q., Wang, Y. Y., & Guo, X. Y. (2008). Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas. Applied Catalysis B, 79, 307–312. 10.1016/j.apcatb.2007.10.032.Search in Google Scholar

Worch, M., Engelmann, H. J., Blum, W., & Zschech, E. (2002). Cross-sectional thin film characterization of Si compounds in semiconductor device structures using both elemental and ELNES mapping by EFTEM. Thin Solid Films, 405, 198–204. 10.1016/s0040-6090(01)01680-7.Search in Google Scholar

Xia, Y. D., Yang, Z. X., & Zhu, Y. Q. (2013). Porous carbon-based materials for hydrogen storage: Advancement and challenges. Journal of Materials Chemistry A, 1, 9365–9381. 10.1039/c3ta10583k.Search in Google Scholar

Yoshikawa, M., Iwagami, K., Morita, N., Matsunobe, T., & Ishida, H. (1997). Characterization of fluorine-doped silicon dioxide film by Raman spectroscopy. Thin Solid Films, 310, 167–170. 10.1016/s0040-6090(97)00393-3.Search in Google Scholar

Zhang, L. H., & Koka, R. V. (1998). A study on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectroscopy. Materials Chemistry and Physics, 57, 23–32. 10.1016/s0254- 0584(98)00187-4.Search in Google Scholar

Received: 2015-12-5
Revised: 2016-3-1
Accepted: 2016-3-24
Published Online: 2016-7-19
Published in Print: 2016-11-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2016-0084/html
Scroll to top button