Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure transformations in SiO2 from classical and ab initio metadynamics

Abstract

Silica is the main component of the Earth's crust and is also of great relevance in many branches of materials science and technology. Its phase diagram is rather intricate and exhibits many different crystalline phases1,2,3,4,5,6. The reported propensity to amorphization and the strong influence on the outcome of the initial structure and of the pressurization protocol1,7 indicate the presence of metastability and large kinetic barriers. As a consequence, theory is also faced with great difficulties and our understanding of the complex transformation mechanisms is still very sketchy despite a large number of simulations8,9,10,11,12,13. Here, we introduce a substantial improvement of the metadynamics method14,15, which finally brings simulations in close agreement with experiments. We unveil the subtle and non-intuitive stepwise mechanism of the pressure-induced transformation of fourfold-coordinated α-quartz into sixfold-coordinated stishovite at room temperature. We also predict that on compression fourfold-coordinated coesite will transform into the post-stishovite α-PbO2-type phase. The new method is far more efficient than previous methods, and for the first time the study of complex structural phase transitions with many intermediates is within the reach of molecular dynamics simulations. This insight will help in designing new experimental protocols capable of steering the system towards the desired transition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the enthalpy in the simulation starting from quartz II.
Figure 2: Transition from the 3×2 structure to stishovite.
Figure 3: Evolution of the enthalpy during the transition from coesite to the α-PbO2 phase.
Figure 4: Transition from coesite to the α-PbO2 phase.

Similar content being viewed by others

References

  1. Hemley, R. J., Prewitt, C. T. & Kingma, K. J. Silica–Physical Behaviour, Geochemistry, and Materials Applications 41 (Rev. Mineral. Vol. 29, MSA, Washington DC, 1994).

    Google Scholar 

  2. Tsuchida, Y. & Yagi, T. New pressure-induced transformations of silica at room temperature. Nature 347, 267–269 (1990).

    Article  Google Scholar 

  3. Kingma, K. J., Hemley, R. J., Mao, H. K. & Veblen, D. R. New high-pressure transformation in α-quartz. Phys. Rev. Lett. 70, 3927–3930 (1993).

    Article  Google Scholar 

  4. Dubrovinsky, L. S. et al. Experimental and theoretical identification of a new high-pressure phase of silica. Nature 388, 362–365 (1997).

    Article  Google Scholar 

  5. Haines, J., Léger, J. M., Gorelli, F. & Hanfland, M. Crystalline post-quartz phase in silica at high pressure. Phys. Rev. Lett. 87, 155503 (2001).

    Article  Google Scholar 

  6. Kuwayama, Y., Hirose, K., Sata, N. & Ohishi, Y. The pyrite-type high-pressure form of silica. Science 309, 923–925 (2005).

    Article  Google Scholar 

  7. Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988).

    Article  Google Scholar 

  8. Tsuneyuki, S., Matsui, Y., Aoki, H. & Tsukada, M. New pressure-induced structural transformations in silica obtained by computer simulation. Nature 339, 209–211 (1989).

    Article  Google Scholar 

  9. Binggeli, N., Chelikowsky, J. R. & Wentzcovitch, R. M. Simulating the amorphization of α-quartz under pressure. Phys. Rev. B 49, 9336–9340 (1994).

    Article  Google Scholar 

  10. Somayazulu, M. S., Sharma, S. M. & Sikka, S. K. Structure of a new high pressure phase in α-quartz determined by molecular dynamics studies. Phys. Rev. Lett. 73, 98–101 (1994).

    Article  Google Scholar 

  11. Dean, D. W., Wentzcovitch, R. M., Keskar, N., Chelikowsky, J. R. & Binggeli, N. Pressure-induced amorphization in crystalline silica: Soft phonon modes and shear instabilities in coesite. Phys. Rev. B 61, 3303–3309 (2000).

    Article  Google Scholar 

  12. Klug, D. D. et al. Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite. Phys. Rev. B 63, 104106 (2001).

    Article  Google Scholar 

  13. Campañá, C., Müser, M. H., Tse, J. S., Herzbach, D. & Schöffel, P. Irreversibility of the pressure-induced phase transition of quartz and the relation between three hypothetical post-quartz phases. Phys. Rev. B 70, 224101 (2004).

    Article  Google Scholar 

  14. Martoňák, R., Laio, A. & Parrinello, M. Predicting crystal structures: The Parrinello-Rahman method revisited. Phys. Rev. Lett. 90, 075503 (2003).

    Article  Google Scholar 

  15. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article  Google Scholar 

  16. Demuth, T., Jeanvoine, Y., Hafner, J. & Ángyán, J. G. Polymorphism in silica studied in the local density and generalized-gradient approximations. J. Phys. Condens. Matter 11, 3833–3874 (1999).

    Article  Google Scholar 

  17. Teter, D. M., Hemley, R. J., Kresse, G. & Hafner, J. High pressure polymorphism in silica. Phys. Rev. Lett. 80, 2145–2148 (1998).

    Article  Google Scholar 

  18. Oganov, A. R., Gillan, M. J. & Price, G. D. Structural stability of silica at high pressures and temperatures. Phys. Rev. B 71, 064104 (2005).

    Article  Google Scholar 

  19. Parrinello, M. & Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).

    Article  Google Scholar 

  20. Martoňák, R. et al. Simulation of structural phase transitions by metadynamics. Z. Kristallogr. 220, 489–498 (2005).

    Google Scholar 

  21. Ceriani, C. et al. Molecular dynamics simulation of reconstructive phase transitions on an anhydrous zeolite. Phys. Rev. B 70, 113403 (2004).

    Article  Google Scholar 

  22. Oganov, A. R., Martoňák, R., Laio, A., Raiteri, P. & Parrinello, M. Anisotropy of Earth's D′′ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144 (2005).

    Article  Google Scholar 

  23. Raiteri, P., Martoňák, R. & Parrinello, M. Exploring polymorphism: the case of benzene. Angew. Chem. Int. Edn 44, 3769–3773 (2005).

    Article  Google Scholar 

  24. van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990).

    Article  Google Scholar 

  25. Saika-Voivod, I., Sciortino, F., Grande, T. & Poole, P. H. Phase diagram of silica from computer simulation. Phys. Rev. E 70, 061507 (2004).

    Article  Google Scholar 

  26. Choudhury, N. & Chaplot, S. L. Ab initio studies of phonon softening and high-pressure phase transitions of α-quartz SiO2 . Phys. Rev. B 73, 094304 (2006).

    Article  Google Scholar 

  27. Sowa, H. & Koch, E. Group-theoretical and geometrical considerations of the phase transition between the high-temperature polymorphs of quartz and tridymite. Acta Crystallogr. A 58, 327–333 (2002).

    Article  Google Scholar 

  28. Hantsch, U. et al. Theoretical investigation of moganite. Eur. J. Mineral. 17, 21–30 (2005).

    Article  Google Scholar 

  29. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  Google Scholar 

  30. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  31. Gonze, X. et al. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge stimulating discussions with M. Bernasconi as well as help from P. Raiteri and M. Valle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Martoňák.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary tables I, II and III (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martoňák, R., Donadio, D., Oganov, A. et al. Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nature Mater 5, 623–626 (2006). https://doi.org/10.1038/nmat1696

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1696

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing