肌肉减少症研究进展
Research Progress of Sarcopenia
DOI: 10.12677/ACM.2023.1351235, PDF, HTML, XML, 下载: 194  浏览: 453 
作者: 段 苗:西安医学院研工部,陕西 西安;史丽萍*:陕西省人民医院消化内二科,陕西 西安
关键词: 肌少症老年人发病机制慢性合并症Sarcopenia Elderly Pathogenesis Chronic Comorbidities
摘要: 肌肉减少症(sarcopenia) (简称肌少症)是一种进行性和全身性骨骼肌疾病,涉及肌肉力量减低、肌肉质量下降和躯体功能的加速丧失,与跌倒、功能衰退、虚弱和死亡率等不良后果增加有关,分为与年龄相关的原发性肌肉减少症及由慢性疾病所致的继发性肌肉减少症。随着世界人口的老龄化,肌少症的患病率总体来说呈上升趋势。因此,早期识别并采取有效干预措施延缓肌少症的发生十分必要。本文从肌少症的概念、发病机制、合并常见慢性病等方面进行综述,旨在提高临床工作者对肌少症的认识从而提高老年人群生活质量、减轻医疗保健系统的负担。
Abstract: Sarcopenia (abbreviated as sarcopenia) is a progressive and systemic skeletal muscle disease that involves decreased muscle strength, decreased muscle mass, and accelerated loss of physical func-tion. It is associated with increased adverse consequences such as falls, functional decline, weak-ness, and mortality. It can be divided into age-related primary sarcopenia and secondary sarcope-nia caused by chronic diseases. With the aging of the world population, the overall incidence of sar-copenia is on the rise. Therefore, early identification and effective intervention measures are nec-essary to delay the occurrence of sarcopenia. This article reviews the concept, pathogenesis, and common chronic diseases of sarcopenia, aiming to enhance clinical workers’ understanding of sar-copenia, improve the quality of life of the elderly population, and reduce the burden on the healthcare system.
文章引用:段苗, 史丽萍. 肌肉减少症研究进展[J]. 临床医学进展, 2023, 13(5): 8836-8844. https://doi.org/10.12677/ACM.2023.1351235

1. 概念

肌肉减少症(sarcopenia)源自希腊语“sarx (肉体)、penia (损失)”,是一种进行性和全身性骨骼肌疾病 [1] ,这一概念由Rosenberg于1989年首次提出 [2] 。肌少症包含肌肉力量减低、肌肉质量下降和躯体功能的加速丧失三方面,与老年人虚弱、跌倒、功能衰退和死亡率不良后果相关,并增加住院患者的经济负担。2010年,欧洲老年人肌肉减少症工作组将其定义为同时存在低肌肉质量和低肌肉功能(力量或表现) [3] 。2014年亚洲肌肉减少症工作组(AWGS)针对亚洲人群将肌肉减少症定义为“与年龄相关的肌肉量减少、肌肉力量低下和/或身体机能低下”,同时指定了相关临界值,即1) 肌肉质量:男性70 kg/m,女性5.4 kg/m (使用双x射线吸收仪)、男性70 kg/m,女性5.7 kg/m (使用生物阻抗分析);2) 握力:男性 < 26 kg,女性 < 18 kg;3) 步态速度:<0.8 m/s [4] 。EWGSOP和AWGS分别于2018年、2019年更新了肌肉减少症的定义、修改了诊断算法、协议和一些标准,还引入了“可能的肌肉减少症”这一概念 [5] [6] 。如今,肌少症已被世界卫生组织确认作为一种独立的疾病,具有国际疾病分类代码ICD-10-CM (M62.84) [7] 。为解决我国对肌少症的危害认知不足、诊断方法尚未统一等诸多问题,中华医学会老年医学分会编写了中国老年人肌少症诊疗专家共识(2021),推荐肌少症的定义为一种增龄相关的肌肉量减少、肌肉力量下降和/或躯体功能减退的老年综合征,会引起机体功能障碍,增加老年人跌倒、失能和死亡风险 [8] 。

2. 流行病学

肌少症是一种增龄相关的疾病,会影响老年人口生活质量、疾病预后及死亡风险。由于目前肌少症的定义及诊断标准的临界值尚未统一,患病率的估计值从9.9%到40.4%不等,差别取决于所使用的具体定义 [9] 。也与个体的性别、国籍、基础情况等有所不同相关。据报道,女性肌肉减少症的患病率在2.5%和27.2%之间,男性则在3.1%和20.4%之间 [10] 。Xin等人在一项荟萃分析中发现中国老年人肌少症总体患病率为14% (95% CI 11%~18%),女性的患病率高于男性(15% vs 14%);并且根据AWGS标准评估的总患病率为14% (95% CI 11%~18%,而基于在IWGS和EWGSOP标准上,分别为18% (95% CI 11%~25%)和10% (95% CI 7%~14%) [11] 。日本的一项类似研究表明日本老年人的肌肉减少症患病率为9.9% (95% CI 6.2%~15.4%) [12] 。Yoo Jin Choo等人首次估计了韩国 ≥ 65岁老年人肌肉减少症的汇总患病率为13.1% (95% CI, 6.1~25.9),其中男性为14.9% (95% CI, 6.3~31.5),女性为11.4% (95% CI, 6.1~20.5) [13] 。也有研究证明在平均年龄为53至69.6岁的研究对象中有38.6%的患者出现治疗前肌肉减少症(95% CI 37.4~39.8)。其中食管癌和小细胞肺癌的治疗前肌肉减少症患病率最高 [14] 。上述结果表明肌肉减少症在老年人群中很常见。因此,肌少症的早发现、早诊治应受到重视。

3. 发病机制

3.1. 蛋白合成与分解失衡

骨骼肌含量取决于蛋白质降解和蛋白质合成速率的差异,蛋白质合成减少和(或)蛋白质降解的增加导致肌肉质量减少。在肌肉蛋白合成中,雷帕霉素(rapamycin, mTOR)的机制靶点是各种机械刺激的关键调节因子,而肌肉降解受三种主要蛋白水解系统的调节,即半胱天冬酶介导的蛋白质切割、ATP依赖性泛素–蛋白酶体系统和自噬。mTOR的蛋白激酶在调节骨骼肌质量中起重要作用,mTORC1信号传导的激活可以通过抑制自噬介导的蛋白质降解来部分调节骨骼肌质量 [15] 。

3.2. 炎症因子

炎症细胞因子包括C反应蛋白(CRP)、白介素6 (IL-6)、肿瘤坏死因子-α (TNF-α)已被证明会促进肌肉萎缩,最终刺激蛋白质分解代谢并抑制肌肉合成。一项荟萃分析表明肌肉减少症患者的CRP水平显着升高,这提示在女性患者中炎症和肌肉减少症之间的具有关联性 [16] 。IL-6对肌肉生长代谢的作用是矛盾的,它短期内刺激干细胞的增殖能力,激活肌肉生成,但其血清水平的持续升高,特别是在老年人中,与肌肉萎缩和肌肉减少症有关 [17] 。值得注意的是,促进骨骼肌组织蛋白质合成的减少和蛋白质降解的增加是通过激活Janus kinasi (JAK)/STAT通路、丝裂原活化蛋白激酶(MAPK)/细胞外信号调节激酶(ERK)通路和磷酸肌醇3-激酶(PI3K)/蛋白激酶B (AKT)/哺乳动物雷帕霉素靶蛋白(mTOR)通路,而这三种信号通路都是从IL-6及其受体的结合开始的。血清TNF-α水平升高与肌肉损伤有关。其产生活性氧(ROS)介导肌肉萎缩,介导“atrogenes”(萎缩相关基因)的表达调节NF-κB信号通路的激活,并通过泛素蛋白酶体E3连接酶MurF1和Atrogin的转录促进蛋白质降解。

3.3. 线粒体功能障碍

线粒体在生理和病理条件下对肌核结构域起着至关重要的调节作用。全身炎症因子增加会导致活性氧(ROS)和氧化应激的过度产生 ,线粒体是最易受ROS影响的细胞器,耗氧量会降低线粒体产生ATP的能力,破坏线粒体动力学并导致“线粒体自噬”,即线粒体降解途径的过度激活 [18] 。线粒体功能障碍会激活细胞凋亡,从而引发运动神经元和肌纤维死亡,最终导致肌肉减少 [19] 。

3.4. 激素水平下降

胰岛素、胰岛素样生长因子(IGF-1)和睾酮等与肌少症的发生密切相关。胰岛素和IGF-1通过IRS1/PI3K/AKT/TSC2/Rheb/mTORC1通路启动的典型信号级联反应。在肌细胞中,胰岛素增加蛋白质合成并减少降解以有利于合成代谢过程;IGF-1刺激会降低Atrogin的表达减少的肌原纤维蛋白降解。相反,抑制IGF-1/PI3-K/Akt信号通路会导致Foxo家族转录因子的激活和Atrogin-1/MAFbx表达的增强,诱导蛋白降解 [20] [21] [22] 。睾酮还能刺激成卫星细胞有丝分裂或是通过Erk和mTOR信号传导增加IGF-1导致肌肉细胞肥大 [23] 。此外,睾酮抑制NF-κB诱导激酶的表达,对骨骼肌萎缩产生影响。

3.5. 维生素D缺乏

维生素D在改善和维持老年人的肌肉力量和功能方面具有潜在作用,维生素D通过上调卵泡抑素和胰岛素样生长因子2诱导细胞增殖,它还可抑制肌肉抑制素的表达,从而防止肌肉退化并改善收缩细丝和肌肉力量 [24] 。此外,维生素D缺乏会降低耗氧率并导致线粒体功能的破坏并影响骨骼肌萎缩的发展。其中,触发Murf1和MaFbx (肌肉萎缩标志物)表达的可能信号通路可能涉及Src-ERK1/2-Akt-FOXO [25] 。

4. 常见慢性疾病

肌少症常与多种慢性疾病伴随出现,与患者发病率和死亡率有关,可导致疾病的不良预后发生。

4.1. 骨质疏松

骨骼肌肉系统共同支撑躯体并产生运动,也可作为储存部位(骨骼中储存钙和肌肉中储存葡萄糖)。当骨质疏松症和肌肉减少症同时发生时,可将其称为骨肌减少症(osteosarcopenia, OS)。在30岁到70岁之间,骨量通常会减少30%,40岁末之后肌肉纤维损失加速,导致80岁时肌肉质量损失30% [26] 。

最近,在一项针对148名受试者的研究表明,肌肉减少症同时发生骨质疏松症的患病率高于非肌肉减少症者(51.3% vs. 21.6%, P < 0.001) [27] ,另一项纳入232名参与者的研究观察到患有肌肉减少症的个体同时发生骨质疏松症的风险大约高出五倍 [28] 。也有研究指出骨质疏松个体(P < 0.001)发生肌肉减少症的风险更高 [29] 。总的来说,骨质疏松和肌少症两者之间存在相互关系,共同导致老年人出现功能受损、残疾、跌倒的风险增加。肌肉萎缩和骨质流失主要与以下三方面相关:1) 甘氨酸-N-酰基转移酶(GLYAT)、甲基转移酶21C (METTL21C)、过氧化物酶体增殖物激活受体γ共激活因子1-α (PGC-1α)和肌细胞增强因子-2 (MEF2C)基因的多态性。2) 肌动蛋白(myostatin、follistatin和鸢尾素)对骨骼重塑有直接影响。3) 骨钙素和连接蛋白(骨衍生的骨因子)对肌肉合成代谢和分解代谢具有调节作用。此外,激素水平下降、蛋白质、维生素D摄入不足等相关因素与两者的发生均相关 [30] 。

4.2. 肝硬化

肌肉减少症是肝硬化患者常见但经常被忽视的并发症,与肝硬化患者感染率升高、住院时间延长、肝性脑病发生、生活质量降低等呈正相关。肌少症是男性患者肝移植后生存率的独立预测因子 [31] 。一项荟萃分析提示肝硬化患者的肌肉减少症总体患病率为37.5% (95% CI 32.4%~42.8%),男性、酒精相关性肝病、Child-Pugh C级化肝硬患者肌肉减少症与疾病死亡风险增加相关(调整后的风险比2.30 (95% CI 2.01~2.63)。终末期肝病(MELD)合并肌肉减少症的死亡率较高,故将肌肉减少症添加到MELD评分模型可提高预测生存率的准确性 [32] 。营养不良在肝硬化的肌肉减少症中起主要作用,炎症介质增多、腹内压增加、肠道蠕动改变、味觉障碍均可引起的恶心和厌食从而导致营养摄入不足 [33] 。肝硬化患者禁食10小时的脂肪酸氧化、肌肉和肝糖原减少的发生方式相当于健康人群饥饿3天,长时间的饥饿导致骨骼肌蛋白降解以提供糖异生底物,因此,肝硬化患者较健康人群更易发生肌少症。肝硬化导致血氨升高,通过NF-κB依赖性途径激活肌肉抑制素、TCA循环中间体a-酮戊二酸丧失从而促进氧化应激和线粒体功能受损以及增加硝化的蛋白质自噬三种途径导致肌肉蛋白和脂质氧化损伤,进一步加剧肌肉减少症。此外,细菌及其产物转移入血促使与肌肉萎缩有关的细胞因子的释放、过多的脂质流入骨骼肌以及脂质衍生中间体在骨骼肌中的积累可导致线粒体功能障碍和胰岛素抵抗、治疗肝硬化腹水所使用的袢利尿剂、长期服用皮质类固醇或他汀类药物也可能参与肝硬化肌肉减少症的发病 [34] 。

4.3. 炎症性肠病

炎症性肠病(IBD)包括克罗恩病(CD)和溃疡性结肠炎(UC)。据调查,IBD患者肌肉减少症的患病率约42% [35] 。主要是由炎症因子、营养不良、肌肉–肠轴、肠道菌群(GM)等相互作用所致,肠道炎症状态可能被认为是肌少症发展的起点,上调促炎细胞因子的产生及抑制T细胞凋亡会破坏骨骼肌蛋白质合成;释放炎症介质引起局部炎症反应,加速肠道转运,这可能会限制腔内容物与粘膜表面的接触时间,减少氨基酸的吸收导致肌肉合成减少 [36] [37] 。改变肠道菌群影响其对骨骼肌功能和氨基酸生物利用度的调节作用。例如,双歧杆菌(Actinobacteria phylum)促进蛋白质在肠道中分解成氨基酸,产生短链脂肪酸(SCFA)以产生能量,刺激IGF-1/mTORC1通路,并促进参与肌肉蛋白质合成的基因表达。大肠杆菌和克雷伯氏菌通过刺激IGF-1/mTOR通路在骨骼肌合成代谢和细胞增殖中发挥作用。据报道,肌肉减少症患者的Faecalibacterium prausnitzii、Roseburia inulinivorans和Alistipes shahii菌种显着减少,这些菌种都是在产生SCFA方面具有显着代谢能力的有能力的细菌 [38] 。在IBD患者中,产生SCFA的细菌通常在粘膜和粪便中减少,增加了骨骼肌合成代谢阻力。通常CD患者溃疡病灶下肠系膜脂肪组织增加,脂肪细胞直接参与诱导肠上皮细胞的炎症反应,这与IBD的恶化有关,并且可能与肌肉减少症的发展有关。炎症反应和营养不良可能是由肠黏膜损伤、营养吸收受限和过度消耗状态引起的,以上均可能导致肌肉减少症的发生,研究表明较低的BMI (β = −0.766; P = 0.018; OR = 0.449)和Alb水平(β = −0.482; P = 0.004; OR = 0.608)是IBD患者发生肌肉减少症的危险因素 [39] 。

4.4. 糖尿病

糖尿病是一种以血糖水平慢性增高为特征的代谢疾病群,胰岛素敏感性受损、慢性高血糖、晚期糖基化终产物(AGEs)、亚临床炎症以及微血管和大血管并发症都可能导致肌少症的发生。T2DM中肌肉减少症的患病率显着高于非糖尿病个体 [40] 。AGEs会在糖尿病患者的各种组织中积累,通过增加氧化应激和炎性细胞因子诱导肌肉蛋白的交联和分解,其在快缩肌纤维中的积累与肌肉胶原蛋白交联,增加肌肉僵硬并降低肌肉收缩的张力 [41] 。高血糖引起的胰岛素抵抗和慢性炎症通过涉及丝氨酸–苏氨酸激酶Akt或转录因子叉头盒O的途径导致肌肉萎缩。胰岛素的使用有助于维持肌肉质量并防止糖尿病患者肌肉减少症的发生或进展,HbA1c值下降1% SMI和步态速度显着增加 [42] 。因此,纠正血糖控制不佳和使用胰岛素可显著增加T2DM肌少症患者的骨骼肌质量和步态速度。一项最新研究显示,骨形态发生蛋白7 (BMP-7)可减轻高血糖(约50%)、细胞焦亡、炎症和糖尿病不良结构改变以及改善肌肉功能,可能是治疗糖尿病性肌病的潜在治疗选择 [43] 。

4.5. 慢性阻塞性肺疾病

慢性阻塞性肺病(COPD)是一种以持续气流受限和各种呼吸道症状为特征的慢性气道疾病,肌肉减少症是其常见且严重的合并症,患病率为24.6%。全身炎症是其公认的致病机制,炎症细胞因子激活了许多涉及骨骼肌萎缩的分子途径,导致蛋白质合成和分解代谢之间的不平衡 [44] ,而另一项荟萃分析提示肌肉减少症和炎症或氧化应激生物标志物之间没有观察到明确的关系 [45] 。吸烟是COPD的主要诱因,香烟烟雾提取物(CSE)诱导肌管萎缩,同时Parkin表达水平降低30% (P < 0.05),Parkin介导的线粒体自噬不足和线粒体ROS增加,通过激活MuRF-1导致肌肉萎缩加剧 [46] 。COPD患者长期活动受限、能量摄入不足、缺氧都是肌肉损失的触发因素。此外,COPD急性加重期间全身性炎症会出现峰值,以及控制局部肺部炎症所使用的皮质类固醇都可能加速急性肌肉损失 [47] 。一项前瞻性、对照、横断面研究提示与非肌肉减少的对照组相比,COPD合并肌少症的患者肌肉表型的改变显着(从慢到快的转换表型和较小的快缩肌和混合肌纤维)、肌肉损伤明显、肌肉生长抑制剂myostatin升高 [48] 。最近的研究表明肌肉减少指数(SI)与COPD加重住院的患者的预后特征相关,较低的SI值与较长的住院时间、较多的呼吸困难和较大的功能障碍相关。由于它是与肌肉质量相关的指标,因此可用于识别肌少症的可能患者 [49] 。肌肉减少症导致COPD患者生存率降低,需要早期识别和治疗以改善预后。

5. 筛查与诊断

多使用SARC-F调查问卷早期识别可能肌少症患者,该问卷包括肌肉力量(Strength)、辅助行走(Assistance in walking)、起立(Rise from a chair)、爬楼梯(Climb stairs)、跌倒(Falls) 5项内容。AWGS 2019 建议将小腿围作为一项评估参数列入SARC-CalF调查问卷,可提高诊断的敏感性。鉴于SARC-F调查问卷结果多会受到患者主观因素的影响,也有推荐使用Ishii评分对肌少症患者进行评估。

目前评估肌少症主要通过肌肉质量、肌肉力量和躯体功能三个方面。

1) 肌肉力量:多应用弹簧式、液压式握力器,建议使用优势手至少测试2次取最大值,握力(男性 < 28 kg,女性 < 18 kg)用于评估肌肉力量减少。

2) 肌肉质量:ASMI是用于判断肌肉质量减少的指标。磁共振成像、计算机断层扫描、双能X射线吸收测定法(DXA)、生物电阻抗身体成分测量仪(BIA)均可测量,但考虑到可操作性及对人体的危害,目前多推荐临床使用DXA (男性 < 7 kg/m2,女性 < 5.4 kg/m2)和BIA (男性 < 7 kg/m2,女性 < 5.7 kg/m2)。

3) 躯体功能:评估躯体功能的测试包括简易体能状况量表(SPPB < 9分)、6米步行测试(速度 < 1.0 m/s)或5次椅子站立测试(<12 s)。

肌肉力量下降或躯体功能受限被认为是可能肌少症;肌肉质量减少及肌肉力量下降或躯体功能受限被定义为肌少症;严重肌少症是指肌肉质量减少及肌肉力量下降和躯体功能受限。

肌肉减少指数(SI)是预测患者肌肉质量的新指标。Kianoush B Kashani等人在一项回顾性研究中使用两种常见的肾脏生物指标开发了这一新的指标来评估肌肉减少症的肌肉质量成分(SI = 血清肌酐/血清胱抑素C × 100),并通过实验证明SI是预测ICU患者肌肉质量的一项新指标且与疾病的不良预后相关 [50] 。大量研究证实SI可独立肝硬化、慢阻肺、非小细胞肺癌、食管癌患者的营养状况、肌肉质量及短期预后 [51] [52] [53] [54] [55] 。血清肌酐及血清胱抑素-C两项指标临床上容易获取且计算公式不存在主观误差,故SI可作为评估患者肌肉减少症的替代生物标志物,但SI用于界定肌少症的临界值尚未统一也有研究表明超声及D3-肌酸稀释法可用于评估肌少症 [56] [57] 。相较于X线、CT、MRI,这些指标便于操作、降低辐射、减少花费,但仍未在临床上广泛使用。因此这一指标仍需大量临床研究近一步验证。

6. 结论

随着年龄的增长,人体所有系统的细胞和组织功能都会下降,机体处于低度慢性炎症状态导致健康状况的受损,从而触发身体和认知方面的多种疾病。肌少症是一种增龄性疾病,老年人群中普遍存在而又容易忽视,其涉及肌肉量的丢失以及与不良结局发生,包括跌倒,功能下降,虚弱和死亡率。因此有必要将肌少症的诊断、治疗和预防纳入常规临床实践的一部分。

NOTES

*通讯作者。

参考文献

[1] Cruz-Jentoft, A.J. and Sayer, A.A. (2019) Sarcopenia. The Lancet, 393, 2636-2646.
https://doi.org/10.1016/S0140-6736(19)31138-9
[2] Rosenberg, I.H. (1997) Sarcopenia: Origins and Clinical Relevance. The Journal of Nutrition, 127, 990S-991S.
https://doi.org/10.1093/jn/127.5.990S
[3] Cruz-Jentoft, A.J., Baeyens, J.P. and Bauer, J.M. (2010) Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older Peo-ple. Age Ageing, 39, 412-423.
https://doi.org/10.1093/ageing/afq034
[4] Chen, L.K., Liu, L.K. and Woo, J. (2014) Sarcopenia in Asia: Consen-sus Report of the Asian Working Group for Sarcopenia. Journal of the American Medical Directors Association, 15, 95-101.
https://doi.org/10.1016/j.jamda.2013.11.025
[5] Cruz-Jentoft, A.J., Bahat, G. and Bauer, J. (2019) Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing, 48, 16-31.
https://doi.org/10.1093/ageing/afy169
[6] Chen, L.K., Woo, J. and Assantachai, P. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Di-rectors Association, 21, 300-307.e2.
https://doi.org/10.1016/j.jamda.2019.12.012
[7] Anker, S.D., Morley, J.E. and von Haehling, S. (2016) Welcome to the ICD-10 Code for Sarcopenia. Journal of Cachexia, Sarcopenia and Muscle, 7, 512-514.
https://doi.org/10.1002/jcsm.12147
[8] 刘娟, 丁清清, 周白瑜. 中国老年人肌少症诊疗专家共识(2021) [J]. 中华老年医学杂志, 2021, 40(8): 943-952.
https://doi.org/10.3760/cma.j.issn.0254-9026.2021.08.001
[9] Mayhew, A.J., Amog, K. and Phillips, S. (2019) The Prevalence of Sarcopenia in Community-Dwelling Older Adults, an Exploration of Differences between Studies and within Definitions: A Systematic Review and Meta-Analyses. Age Ageing, 48, 48-56.
https://doi.org/10.1093/ageing/afy106
[10] Bischoff-Ferrari, H.A., Orav, J.E., Kanis, J.A. and Rizzoli, R. (2015) Comparative Performance of Current Definitions of Sarcopenia against the Prospective Incidence of Falls among Com-munity-Dwelling Seniors Age 65 and Older. Osteoporosis International, 26, 2793-2802.
https://doi.org/10.1007/s00198-015-3194-y
[11] Xin, C., Sun, X. and Lu, L. (2021) Prevalence of Sarcopenia in Older Chinese Adults: A Systematic Review and Meta-Analysis. BMJ Open, 11, e041879.
https://doi.org/10.1136/bmjopen-2020-041879
[12] Makizako, H., Nakai, Y. and Tomioka, K. (2019) Prevalence of Sarcopenia Defined Using the Asia Working Group for Sarcopenia Criteria in Japanese Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. Physical Therapy Research, 22, 53-57.
https://doi.org/10.1298/ptr.R0005
[13] Choo, Y.J. and Chang, M.C. (2021) Prevalence of Sarcopenia among the Elderly in Korea: A Meta-Analysis. Journal of Preventive Medicine and Public Health, 54, 96-102.
https://doi.org/10.3961/jpmph.21.046
[14] Pamoukdjian, F., Bouillet, T. and Levy, V. (2018) Prevalence and Pre-dictive Value of Pre-Therapeutic Sarcopenia in Cancer Patients: A Systematic Review. Clinical Nutrition, 37, 1101-1113.
https://doi.org/10.1016/j.clnu.2017.07.010
[15] Goodman, C.A. (2014) The Role of mTORC1 in Regulating Pro-tein Synthesis and Skeletal Muscle Mass in Response to Various Mechanical Stimuli. Reviews of Physiology, Biochemis-try and Pharmacology, 166, 43-95.
https://doi.org/10.1007/112_2013_17
[16] Bano, G., Trevisan, C. and Carraro, S. (2017) Inflammation and Sarco-penia: A Systematic Review and Meta-Analysis. Maturitas, 96, 10-15.
https://doi.org/10.1016/j.maturitas.2016.11.006
[17] Ebadi, M., Bhanji, R.A. and Mazurak, V.C. (2019) Sarcopenia in Cirrhosis: From Pathogenesis to Interventions. Journal of Gastroenterology, 54, 845-859.
https://doi.org/10.1007/s00535-019-01605-6
[18] Nardone, O.M., de Sire, R. and Petito, V. (2021) Inflammatory Bowel Diseases and Sarcopenia: The Role of Inflammation and Gut Microbiota in the Development of Muscle Failure. Frontiers in Immunology, 12, Article ID: 694217.
https://doi.org/10.3389/fimmu.2021.694217
[19] Marzetti, E., Calvani, R. and Cesari, M. (2013) Mitochondrial Dysfunction and Sarcopenia of Aging: From Signaling Pathways to Clinical Trials. The International Journal of Bio-chemistry & Cell Biology, 45, 2288-2301.
https://doi.org/10.1016/j.biocel.2013.06.024
[20] Lee, H.K., Rocnik, E. and Fu, Q. (2012) Foxo/Atrogin Induction in Human and Experimental Myositis. Neurobiology of Disease, 46, 463-475.
https://doi.org/10.1016/j.nbd.2012.02.011
[21] Dimitriadis, G., Mitrou, P., Lambadiari, V., et al. (2011) Insulin Effects in Muscle and Adipose Tissue. Diabetes Research and Clinical Practice, 93, S52-S59.
https://doi.org/10.1016/S0168-8227(11)70014-6
[22] Mirzoev, T.M. and Shenkman, B.S. (2018) Regulation of Protein Synthesis in Inactivated Skeletal Muscle: Signal Inputs, Protein Kinase Cascades, and Ribosome Biogenesis. Bi-ochemistry (Mosc), 83, 1299-1317.
https://doi.org/10.1134/S0006297918110020
[23] Shin, M.J., Jeon, Y.K. and Kim, I.J. (2018) Testosterone and Sarcopenia. The World Journal of Men’s Health, 36, 192-198.
https://doi.org/10.5534/wjmh.180001
[24] Remelli, F., Vitali, A. and Zurlo, A. (2019) Vitamin D Deficiency and Sarcopenia in Older Persons. Nutrients, 11, Article No. 2861.
https://doi.org/10.3390/nu11122861
[25] Dzik, K.P. and Kaczor, J.J. (2019) Mechanisms of Vitamin D on Skeletal Muscle Function: Oxidative Stress, Energy Metabolism and Anabolic State. European Journal of Applied Physi-ology, 119, 825-839.
https://doi.org/10.1007/s00421-019-04104-x
[26] Clynes, M.A., Gregson, C.L. and Bruyere, O. (2021) Osteosar-copenia: Where Osteoporosis and Sarcopenia Collide. Rheumatology (Oxford), 60, 529-537.
https://doi.org/10.1093/rheumatology/keaa755
[27] Reiss, J., Iglseder, B. and Alzner, R. (2019) Sarcopenia and Osteoporosis Are Interrelated in Geriatric Inpatients. Zeitschrift für Gerontologie und Geriatrie, 52, 688-693.
https://doi.org/10.1007/s00391-019-01553-z
[28] Locquet, M., Beaudart, C. and Reginster, J.Y. (2019) Associa-tion between the Decline in Muscle Health and the Decline in Bone Health in Older Individuals from the SarcoPhAge Cohort. Calcified Tissue International, 104, 273-284.
https://doi.org/10.1007/s00223-018-0503-4
[29] Da Silva, A.P., Matos, A. and Ribeiro, R. (2017) Sarcopenia and Osteoporosis in Portuguese Centenarians. European Journal of Clinical Nutrition, 71, 56-63.
https://doi.org/10.1038/ejcn.2016.174
[30] Kirk, B., Zanker, J. and Duque, G. (2020) Osteosarcopenia: Epidemiol-ogy, Diagnosis, and Treatment-Facts and Numbers. Journal of Cachexia, Sarcopenia and Muscle, 11, 609-618.
https://doi.org/10.1002/jcsm.12567
[31] Dos Santos, Pinto, D. and Kloeckner, R. (2020) Sarcopenia as Prognostic Factor for Survival after Orthotopic Liver Transplantation. European Journal of Gastroenterology & Hepatology, 32, 626-634.
https://doi.org/10.1097/MEG.0000000000001552
[32] Tantai, X., Liu, Y. and Yeo, Y.H. (2022) Effect of Sarco-penia on Survival in Patients with Cirrhosis: A Meta-Analysis. Journal of Hepatology, 76, 588-599.
https://doi.org/10.1016/j.jhep.2021.11.006
[33] Sinclair, M., Gow, P.J. and Grossmann, M. (2016) Review Article: Sarcopenia in Cirrhosis—Aetiology, Implications and Potential Therapeutic Interventions. Alimentary Pharmacology & Therapeutics, 43, 765-777.
https://doi.org/10.1111/apt.13549
[34] Ebadi, M., Bhanji, R.A. and Mazurak, V.C. (2019) Sarcopenia in Cirrhosis: From Pathogenesis to Interventions. Journal of Gastroenterology, 54, 845-859.
https://doi.org/10.1007/s00535-019-01605-6
[35] Ryan, E., McNicholas, D. and Creavin, B. (2019) Sarcopenia and Inflammatory Bowel Disease: A Systematic Review. Inflammatory Bowel Diseases, 25, 67-73.
https://doi.org/10.1093/ibd/izy212
[36] Jeejeebhoy, K.N. and Duerksen, D.R. (2018) Malnutrition in Gastrointesti-nal Disorders: Detection and Nutritional Assessment. Gastroenterology Clinics of North America, 47, 1-22.
https://doi.org/10.1016/j.gtc.2017.09.002
[37] Balestrieri, P., Ribolsi, M., Guarino, M.P.L. and Emerenziani, S. (2020) Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients, 12, 372.
https://doi.org/10.3390/nu12020372
[38] Ticinesi, A., Mancabelli, L. and Tagliaferri, S. (2020) The Gut-Muscle Axis in Older Subjects with Low Muscle Mass and Performance: A Proof of Concept Study Exploring Fecal Microbiota Composition and Function with Shotgun Metagenomics Sequencing. International Journal of Molecular Sciences, 21, 8946.
https://doi.org/10.3390/ijms21238946
[39] Liu, S., Ding, X. and Maggiore, G. (2022) Sarcopenia Is Associ-ated with Poor Clinical Outcomes in Patients with Inflammatory Bowel Disease: A Prospective Cohort Study. Annals of Translational Medicine, 10, 367.
https://doi.org/10.21037/atm-22-1126
[40] Anagnostis, P., Gkekas, N.K. and Achilla, C. (2020) Type 2 Diabetes Mellitus Is Associated with Increased Risk of Sarcopenia: A Systematic Review and Meta-Analysis. Calcified Tissue In-ternational, 107, 453-463.
https://doi.org/10.1007/s00223-020-00742-y
[41] Mori, H., Kuroda, A. and Ishizu, M. (2019) Association of Ac-cumulated Advanced Glycation End-Products with a High Prevalence of Sarcopenia and Dynapenia in Patients with Type 2 Diabetes. Journal of Diabetes Investigation, 10, 1332-1340.
https://doi.org/10.1111/jdi.13014
[42] Sugimoto, K., Ikegami, H. and Takata, Y. (2021) Glycemic Control and Insulin Improve Muscle Mass and Gait Speed in Type 2 Dia-betes: The MUSCLES-DM Study. Journal of the American Medical Directors Association, 22, 834-838. e1.
https://doi.org/10.1016/j.jamda.2020.11.003
[43] Narasimhulu, Aluganti, C. and Singla, D.K. (2021) Amelioration of Diabetes-Induced Inflammation Mediated Pyroptosis, Sarcopenia, and Adverse Muscle Remodelling by Bone Mor-phogenetic Protein-7. Journal of Cachexia, Sarcopenia and Muscle, 12, 403-420.
https://doi.org/10.1002/jcsm.12662
[44] Tsekoura, M., Tsepis, E. and Billi, E. (2020) Sarcopenia in Patients with Chronic Obstructive Pulmonary Disease: A Study of Prevalence and Associated Factors in Western Greek Population. Lung India, 37, 479-484.
https://doi.org/10.4103/lungindia.lungindia_143_20
[45] Sepulveda-Loyola, W., Osadnik, C. and Phu, S. (2020) Diagnosis, Prevalence, and Clinical Impact of Sarcopenia in COPD: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 11, 1164-1176.
https://doi.org/10.1002/jcsm.12600
[46] Ito, A., Hashimoto, M. and Tanihata, J. (2022) Involvement of Par-kin-Mediated Mitophagy in the Pathogenesis of Chronic Obstructive Pulmonary Disease-Related Sarcopenia. Journal of Cachexia, Sarcopenia and Muscle, 13, 1864-1882.
https://doi.org/10.1002/jcsm.12988
[47] Van Bakel, S.I.J., Gosker, H.R., Langen, R.C. and Schols, A.M.W.J. (2021) Towards Personalized Management of Sarcopenia in COPD. International Journal of Chronic Obstructive Pul-monary Disease, 16, 25-40.
https://doi.org/10.2147/COPD.S280540
[48] Sancho-Munoz, A., Guitart, M. and Rodriguez, D.A. (2021) Defi-cient Muscle Regeneration Potential in Sarcopenic COPD Patients: Role of Satellite Cells. Journal of Cellular Physiology, 236, 3083-3098.
https://doi.org/10.1002/jcp.30073
[49] Warnken-Miralles, M.D., Lopez-Garcia, F. and Zamora-Molina, L. (2021) Sarcopenia Index in Hospitalized Patients with Chronic Obstructive Pulmonary Disease Exacerbation. Medicina (B Aires), 81, 323-328.
[50] Kashani, K.B., Frazee, E.N. and Kukralova, L. (2017) Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Critical Care Medicine, 45, e23-e29.
https://doi.org/10.1097/CCM.0000000000002013
[51] Wu, Y.K., Li, M. and Zhang, Y.C. (2022) The Sarcopenia Index Is an Effective Predictor for Malnutrition in Patients with Liver Cirrhosis. Nutrition & Dietetics, 79, 563-571.
https://doi.org/10.1111/1747-0080.12738
[52] Zhao, X., Su, R. and Hu, R. (2023) Sarcopenia Index as a Predictor of Clinical Outcomes among Older Adult Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study. BMC Geriatrics, 23, Article No. 89.
https://doi.org/10.1186/s12877-023-03784-7
[53] Ge, J., Zeng, J. and Ma, H. (2022) A New Index Based on Se-rum Creatinine and Cystatin C Can Predict the Risks of Sarcopenia, Falls and Fractures in Old Patients with Low Bone Mineral Density. Nutrients, 14, 5020.
https://doi.org/10.3390/nu14235020
[54] Tang, T., Xie, L. and Hu, S. (2022) Serum Creatinine and Cystatin C-Based Diagnostic Indices for Sarcopenia in Advanced Non-Small Cell Lung Cancer. Journal of Cachexia, Sarcopenia and Muscle, 13, 1800-1810.
https://doi.org/10.1002/jcsm.12977
[55] Zheng, C., Wang, E. and Li, J.S. (2022) Serum Creatinine/Cystatin C Ratio as a Screening Tool for Sarcopenia and Prognostic Indicator for Patients with Esophageal Cancer. BMC Geriatrics, 22, Article No. 207.
https://doi.org/10.1186/s12877-022-02925-8
[56] Xu, X., Chen, Y. and Cai, W. (2023) A Multivariable Model Based on Ultrasound Imaging Features of Gastrocnemius Muscle to Identify Patients with Sarcopenia. Journal of Ultra-sound in Medicine.
https://doi.org/10.1002/jum.16223
[57] Zhu, K., Wactawski-Wende, J. and Ochs-Balcom, H.M. (2021) The Association of Muscle Mass Measured by D3-Creatine Dilution Method with Dual-Energy X-Ray Absorp-tiometry and Physical Function in Postmenopausal Women. The Journals of Gerontology Series A Biological Sciences and Medical Sciences, 76, 1591-1599.
https://doi.org/10.1093/gerona/glab020