Skip to main content

The Role of mTORC1 in Regulating Protein Synthesis and Skeletal Muscle Mass in Response to Various Mechanical Stimuli

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology 166

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 166))

Abstract

Skeletal muscle plays a fundamental role in mobility, disease prevention, and quality of life. Skeletal muscle mass is, in part, determined by the rates of protein synthesis, and mechanical loading is a major regulator of protein synthesis and skeletal muscle mass. The mammalian/mechanistic target of rapamycin (mTOR), found in the multi-protein complex, mTORC1, is proposed to play an essential role in the regulation of protein synthesis and skeletal muscle mass. The purpose of this review is to examine the function of mTORC1 in relation to protein synthesis and cell growth, the current evidence from rodent and human studies for the activation of mTORC1 signaling by different types of mechanical stimuli, whether mTORC1 signaling is necessary for changes in protein synthesis and skeletal muscle mass that occur in response to different types of mechanical stimuli, and the proposed molecular signaling mechanisms that may be responsible for the mechanical activation of mTORC1 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GR (1998) Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading. Exerc Sport Sci Rev 26:31–60

    Article  CAS  PubMed  Google Scholar 

  • Adams GR, Bamman MM (2012) Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2:2829–2870

    PubMed  Google Scholar 

  • Adams GR, Haddad F (1996) The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol 81:2509–2516

    CAS  PubMed  Google Scholar 

  • Aguilar V, Alliouachene S, Sotiropoulos A et al (2007) S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase. Cell Metab 5:476–487

    Article  CAS  PubMed  Google Scholar 

  • Alayev A, Holz MK (2013) mTOR signaling for biological control and cancer. J Cell Physiol 228:1658–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessi DR, Kozlowski MT, Weng Q-P, Morrice N, Avruch J (1998) 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8:69–81

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Lamb GD, Westerblad H (2008) Impaired calcium release during fatigue. J Appl Physiol 104:296–305

    Article  CAS  PubMed  Google Scholar 

  • Alway SE (1997) Overload-induced C-Myc oncoprotein is reduced in aged skeletal muscle. J Gerontol A Biol Sci Med Sci 52:B203–B211

    Article  CAS  PubMed  Google Scholar 

  • Anjum R, Blenis J (2008) The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 9:747–758

    Article  CAS  PubMed  Google Scholar 

  • Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR (2000) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a Rapamycin-sensitive pathway. J Nutr 130:2413–2419

    CAS  PubMed  Google Scholar 

  • Anthony TG, McDaniel BJ, Knoll P, Bunpo P, Paul GL, McNurlan MA (2007) Feeding meals containing soy or whey protein after exercise stimulates protein synthesis and translation initiation in the skeletal muscle of male rats. J Nutr 137:357–362

    CAS  PubMed  Google Scholar 

  • Aoki J, Inoue A, Makide K, Saiki N, Arai H (2007) Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89:197–204

    Article  CAS  PubMed  Google Scholar 

  • Appenzeller-Herzog C, Hall MN (2012) Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22:274–282

    Article  CAS  PubMed  Google Scholar 

  • Armstrong DD, Esser KA (2005) Wnt/{beta}-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 289:C853–C859

    Article  CAS  PubMed  Google Scholar 

  • Aspuria PJ, Tamanoi F (2004) The Rheb family of GTP-binding proteins. Cell Signal 16:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H (2005) Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19:786–788

    CAS  PubMed  Google Scholar 

  • Avila-Flores A, Santos T, Rincon E, Merida I (2005) Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid. J Biol Chem 280:10091–10099

    Article  CAS  PubMed  Google Scholar 

  • Azpiazu I, Saltiel AR, DePaoli-Roach AA, Lawrence JCJ (1996) Regulation of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and Rapamycin-sensitive pathways. J Biol Chem 271:5033–5039

    Article  CAS  PubMed  Google Scholar 

  • Baar K, Esser K (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276:C120–C127

    CAS  PubMed  Google Scholar 

  • Bachmann RA, Kim J-H, Wu A-L, Park I-H, Chen J (2006) A nuclear transport signal in mammalian target of Rapamycin is critical for its cytoplasmic signaling to S6 kinase 1. J Biol Chem 281:7357–7363

    Article  CAS  PubMed  Google Scholar 

  • Baker H, Sidorowicz A, Sehgal SN, Vezina C (1978) Rapamycin (AY-22,989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J Antibiot (Tokyo) 31:539–545

    Article  CAS  Google Scholar 

  • Bandi HR, Ferrari S, Krieg J, Meyer HE, Thomas G (1993) Identification of 40 S ribosomal protein S6 phosphorylation sites in Swiss mouse 3 T3 fibroblasts stimulated with serum. J Biol Chem 268:4530–4533

    CAS  PubMed  Google Scholar 

  • Banerjee P, Ahmad MF, Grove JR, Kozlosky C, Price DJ, Avruch J (1990) Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc Natl Acad Sci U S A 87:8550–8554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci U S A 95:15603–15607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylor SM, Hollingworth S (2012) Intracellular calcium movements during excitation–contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers. J Gen Physiol 139:261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beelen M, Zorenc A, Pennings B, Senden JM, Kuipers H, van Loon LJC (2011) Impact of protein coingestion on muscle protein synthesis during continuous endurance type exercise. Am J Physiol – Endocrinol Metab 300:E945–E954

    Article  CAS  PubMed  Google Scholar 

  • Belsham GJ, Denton RM (1980) The effect of insulin and adrenaline on the phosphorylation of a 22 000-molecular weight protein within isolated fat cells; possible identification as the inhibitor-1 of the ‘general phosphatase’ [proceedings]. Biochem Soc Trans 8:382–383

    Article  CAS  PubMed  Google Scholar 

  • Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339:1323–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, Romanino K, Cloëtta D et al (2008) Skeletal muscle-specific ablation of raptor, but Not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8:411–424

    Article  CAS  PubMed  Google Scholar 

  • Bentzinger C, Lin S, Romanino K et al (2013) Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skeletal Muscle 3:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benziane B, Burton TJ, Scanlan B et al (2008) Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol – Endocrinol Metab 295:E1427–E1438

    Article  CAS  PubMed  Google Scholar 

  • Berdeaux R, Stewart R (2012) cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. Am J Physiol – Endocrinol Metab 303:E1–E17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blenis J, Chung J, Erikson E, Alcorta D, Erikson R (1991) Distinct mechanisms for the activation of the RSK kinases/MAP2 kinase/pp90rsk and pp 70–S6 kinase signaling systems are indicated by inhibition of protein synthesis. Cell Growth Differ 2:279–285

    CAS  PubMed  Google Scholar 

  • Blomstrand E, Eliasson J, Karlsson HKR, Köhnke R (2006) Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 136:269S–273S

    CAS  PubMed  Google Scholar 

  • Bodine SC (2006) mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc 38:1950–1957

    Article  CAS  PubMed  Google Scholar 

  • Bodine SC, Stitt TN, Gonzalez M et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Booth FW, Nicholson WF, Watson PA (1982) Influence of muscle use on protein synthesis and degradation. Exerc Sport Sci Rev 10:27–48

    Article  CAS  PubMed  Google Scholar 

  • Brown EJ, Albers MW, Bum Shin T, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758

    Article  CAS  PubMed  Google Scholar 

  • Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL (1995) Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377:441–446

    Article  CAS  PubMed  Google Scholar 

  • Brunn GJ, Fadden P, Haystead TAJ, Lawrence JC (1997a) The mammalian target of Rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J Biol Chem 272:32547–32550

    Article  CAS  PubMed  Google Scholar 

  • Brunn GJ, Hudson CC, Sekulić A et al (1997b) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101

    Article  CAS  PubMed  Google Scholar 

  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A 95:1432–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burry M, Hawkins D, Spangenburg EE (2007) Lengthening contractions differentially affect p70(s6k) phosphorylation compared to isometric contractions in rat skeletal muscle. Eur J Appl Physiol 100:409–415

    Article  CAS  PubMed  Google Scholar 

  • Bush JA, Kimball SR, O’Connor PMJ et al (2003) Translational control of protein synthesis in muscle and liver of growth hormone-treated pigs. Endocrinology 144:1273–1283

    Article  CAS  PubMed  Google Scholar 

  • Buxade M, Parra-Palau JL, Proud CG (2008) The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front Biosci 13:5359–5373

    Article  CAS  PubMed  Google Scholar 

  • Camera DM, Edge J, Short MJ, Hawley JA, Coffey VG (2010) Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc 42:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Carman GM, Han G-S (2006) Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci 31:694–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carraro F, Stuart CA, Hartl WH, Rosenblatt J, Wolfe RR (1990) Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol 259:E470–E476

    CAS  PubMed  Google Scholar 

  • Carrière A, Cargnello M, Julien L-A, Gao H, Bonneil É, Thibault P, Roux PP (2008) Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol 18:1269–1277

    Article  PubMed  CAS  Google Scholar 

  • Chauvin C, Koka V, Nouschi A et al (2013) Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene, in press, doi: 10.1038/onc.2012.606

    Google Scholar 

  • Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci U S A 92:4947–4951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K (1992) Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol 73:1383–1388

    CAS  PubMed  Google Scholar 

  • Chiu MI, Katz H, Berlin V (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A 91:12574–12578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choo AY, Yoon S-O, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A 105:17414–17419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung J, Kuo CJ, Crabtree GR, Blenis J (1992) Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20:190–192

    CAS  PubMed  Google Scholar 

  • Coffey VG, Moore DR, Burd NA et al (2011) Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol 111:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270:12109–12116

    Article  CAS  PubMed  Google Scholar 

  • Conus NM, Hemmings BA, Pearson RB (1998) Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70S6k. J Biol Chem 273:4776–4782

    Article  CAS  PubMed  Google Scholar 

  • Corradetti MN, Guan KL (2006) Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25:6347–6360

    Article  CAS  PubMed  Google Scholar 

  • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 450:736–740

    Article  CAS  PubMed  Google Scholar 

  • Cureton KJ, Collins MA, Hill DW, McElhannon FM Jr (1988) Muscle hypertrophy in men and women. Med Sci Sports Exerc 20:338–344

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, Rennie M (2006) Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab 290:E731–E738

    Article  CAS  PubMed  Google Scholar 

  • Czerwinski SM, Martin JM, Bechtel PJ (1994) Modulation of IGF mRNA abundance during stretch-induced skeletal muscle hypertrophy and regression. J Appl Physiol 76:2026–2030

    CAS  PubMed  Google Scholar 

  • D’Angelo F, Tiribuzi R, Armentano I, Kenny JM, Martino S, Orlacchio A (2011) Mechanotransduction: tuning stem cells fate. J Func Biomater 2:67–87

    Article  CAS  Google Scholar 

  • Dardevet D, Sornet C, Vary T, Grizard J (1996) Phosphatidylinositol 3-kinase and p70 s6 kinase participate in the regulation of protein turnover in skeletal muscle by insulin and insulin-like growth factor I. Endocrinology 137:4087–4094

    CAS  PubMed  Google Scholar 

  • De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199

    Article  PubMed  CAS  Google Scholar 

  • Dearth CL, Goh Q, Marino JS et al (2013) Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response. PLoS One 8:e58486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deldicque L, Louis M, Theisen D et al (2005) Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc 37:731–736

    Article  CAS  PubMed  Google Scholar 

  • Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie M, Francaux M (2008) Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. Eur J Appl Physiol 104:57–65

    Article  CAS  PubMed  Google Scholar 

  • Dennis PB, Pullen N, Kozma SC, Thomas G (1996) The principal rapamycin-sensitive p70(s6k) phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol 16:6242–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai BN, Myers BR, Schreiber SL (2002) FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci U S A 99:4319–4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol 259:E89–E95

    CAS  PubMed  Google Scholar 

  • Dickinson JM, Fry CS, Drummond MJ et al (2011) Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141:856–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson JM, Drummond MJ, Fry CS et al (2013) Rapamycin does not affect post-absorptive protein metabolism in human skeletal muscle. Metabolism 62:144–151

    Article  CAS  PubMed  Google Scholar 

  • DiPasquale DM, Cheng M, Billich W, Huang SA, van Rooijen N, Hornberger TA, Koh TJ (2007) Urokinase-type plasminogen activator and macrophages are required for skeletal muscle hypertrophy in mice. Am J Physiol Cell Physiol 293:C1278–C1285

    Article  CAS  PubMed  Google Scholar 

  • Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M (2006) S6K1- and ßTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314:467–471

    Article  CAS  PubMed  Google Scholar 

  • Dos DS, Ali SM, Kim D-H et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  CAS  Google Scholar 

  • Drake JC, Peelor FF, Biela LM, Watkins MK, Miller RA, Hamilton KL, Miller BF (2013) Assessment of mitochondrial biogenesis and mTORC1 signaling during chronic rapamycin feeding in male and female mice. J Gerontol A Biol Sci Med Sci 68:1493–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drenan RM, Liu X, Bertram PG, Zheng XFS (2004) FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi apparatus. J Biol Chem 279:772–778

    Article  CAS  PubMed  Google Scholar 

  • Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576:613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreyer HC, Drummond MJ, Pennings B et al (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol – Endocrinol Metab 294:E392–E400

    Article  CAS  PubMed  Google Scholar 

  • Drummond MJ, Rasmussen BB (2008) Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care 11:222–226

    Article  CAS  PubMed  Google Scholar 

  • Drummond MJ, Fry CS, Glynn EL et al (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587:1535–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan S, Skaar Jeffrey R, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y, Pagano M (2011) mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR. Mol Cell 44:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois V, Laurent M, Boonen S, Vanderschueren D, Claessens F (2012) Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol Life Sci 69:1651–1667

    Article  CAS  PubMed  Google Scholar 

  • Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH (1990) Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol 144:251–258

    CAS  PubMed  Google Scholar 

  • Edgett BA, Fortner ML, Bonen A, Gurd BJ (2013) Mammalian target of rapamycin pathway is up-regulated by both acute endurance exercise and chronic muscle contraction in rat skeletal muscle. Appl Physiol Nutr Metab 38:862–869

    Article  CAS  PubMed  Google Scholar 

  • Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18:524–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliasson J, Elfegoun T, Nilsson J, Kohnke R, Ekblom B, Blomstrand E (2006) Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 291:E1197–E1205

    Article  CAS  PubMed  Google Scholar 

  • Esbjörnsson M, Rundqvist HC, Mascher H, Österlund T, Rooyackers O, Blomstrand E, Jansson E (2012) Sprint exercise enhances skeletal muscle p70S6k phosphorylation and more so in women than in men. Acta Physiol 205:411–422

    Article  Google Scholar 

  • Fadden P, Haystead TAJ, Lawrence JCL Jr (1997) Identification of phosphorylation sites in the translational regulator, phas-i, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem 272:10240–10247

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    Article  CAS  PubMed  Google Scholar 

  • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7:e1000038

    Article  PubMed Central  CAS  Google Scholar 

  • Ferrari S, Bandi HR, Hofsteenge J, Bussian BM, Thomas G (1991) Mitogen-activated 70K S6 kinase. Identification of in vitro 40 S ribosomal S6 phosphorylation sites. J Biol Chem 266:22770–22775

    CAS  PubMed  Google Scholar 

  • Flinn RJ, Yan Y, Goswami S, Parker PJ, Backer JM (2010) The late endosome is essential for mTORC1 signaling. Mol Biol Cell 21:833–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fluckey JD, Knox M, Smith L, Dupont-Versteegden EE, Gaddy D, Tesch PA, Peterson CA (2006) Insulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP kinase pathway. Am J Physiol 290:E1205–E1211

    CAS  Google Scholar 

  • Fok WC, Zhang Y, Salmon AB et al (2013) Short-term treatment with rapamycin and dietary restriction have overlapping and distinctive effects in young mice. J Gerontol A Biol Sci Med Sci 68:108–116

    Article  CAS  PubMed  Google Scholar 

  • Fonseca BD, Alain T, Finestone LK et al (2011) Pharmacological and genetic evaluation of proposed roles of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), extracellular signal-regulated kinase (ERK), and p90RSK in the control of mTORC1 protein signaling by phorbol esters. J Biol Chem 286:27111–27122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornaro M, Hinken AC, Needle S et al (2013) Mechano growth factor peptide (MGF) has no apparent effect on muscle myoblasts or primary muscle stem cells. Am J Physiol Endocrinol Metab, in press, doi: 10.1152/ajpendo.00408.2013

    Google Scholar 

  • Foster DA (2007) Regulation of mTOR by phosphatidic acid? Cancer Res 67:1–4

    Article  CAS  PubMed  Google Scholar 

  • Frey JW, Farley EE, O’Neil TK, Burkholder TJ, Hornberger TA (2009) Evidence that mechanosensors with distinct biomechanical properties allow for specificity in mechanotransduction. Biophys J 97:347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16:1865–1870

    Article  CAS  PubMed  Google Scholar 

  • Frost RA, Lang CH (1999) Differential effects of insulin-like growth factor I (IGF-I) and IGF-binding protein-1 on protein metabolism in human skeletal muscle cells. Endocrinology 140:3962–3970

    CAS  PubMed  Google Scholar 

  • Frost RA, Lang CH (2007) Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass. J Appl Physiol 103:378–387

    Article  CAS  PubMed  Google Scholar 

  • Frost RA, Lang CH (2011) mTor signaling in skeletal muscle during sepsis and inflammation: where does it all go wrong? Physiology 26:83–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulks RM, Li JB, Goldberg AL (1975) Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J Biol Chem 250:290–298

    CAS  PubMed  Google Scholar 

  • Gallagher JW, Kubica N, Kimball SR, Jefferson LS (2008) Reduced eukaryotic initiation factor 2BÎμ-subunit expression suppresses the transformed phenotype of cells overexpressing the protein. Cancer Res 68:8752–8760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao D, Inuzuka H, Tan MK et al (2011) mTOR drives its own activation via SCFβTrCP-dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 44:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-martínez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–385

    Article  PubMed  CAS  Google Scholar 

  • Gautsch TA, Anthony JC, Kimball SR, Paul GL, Layman DK, Jefferson LS (1998) Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise. Am J Physiol 274:C406–C414

    CAS  PubMed  Google Scholar 

  • Ge Y, Yoon M-S, Chen J (2011) Raptor and Rheb negatively regulate skeletal myogenesis through suppression of insulin receptor substrate 1 (IRS1). J Biol Chem 286:35675–35682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M (2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1{alpha} in human skeletal muscle. J Appl Physiol 106:929–934

    Article  CAS  PubMed  Google Scholar 

  • Gilligan M, Welsh GI, Flynn A et al (1996) Glucose stimulates the activity of the guanine nucleotide-exchange factor eIF-2B in isolated rat islets of Langerhans. J Biol Chem 271:2121–2125

    Article  CAS  PubMed  Google Scholar 

  • Gingras A-C, Gygi SP, Raught B et al (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass DJ (2010) PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 346

    Google Scholar 

  • Glover EI, Oates BR, Tang JE, Moore DR, Tarnopolsky MA, Phillips SM (2008) Resistance exercise decreases eIF2B{varepsilon} phosphorylation and potentiates the feeding-induced stimulation of p70S6K1 and rpS6 in young men. Am J Physiol Regul Integr Comp Physiol 295:R604–R610

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL (1967) Work-induced growth of skeletal muscle in normal and hypophysectomized rats. Am J Physiol 213:1193–1198

    CAS  PubMed  Google Scholar 

  • Goldberg AL (1968a) Protein synthesis during work-induced growth of skeletal muscle. J Cell Biol 36:653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AL (1968b) Role of insulin in work-induced growth of skeletal muscle. Endocrinology 83:1071–1073

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL, Goodman HM (1969) Amino acid transport during work-induced growth of skeletal muscle. Am J Physiol 216:1111–1115

    CAS  PubMed  Google Scholar 

  • Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C (1975) Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 7:185–198

    CAS  PubMed  Google Scholar 

  • Goldspink DF, Cox VM, Smith SK, Eaves LA, Osbaldeston NJ, Lee DM, Mantle D (1995) Muscle growth in response to mechanical stimuli. Am J Physiol 268:E288–E297

    CAS  PubMed  Google Scholar 

  • Goncharova EA, Goncharov DA, Li H, Pimtong W, Lu S, Khavin I, Krymskaya VP (2011) mTORC2 is required for proliferation and survival of TSC2-null cells. Mol Cell Biol 31:2484–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman CA, Miu MH, Frey JW et al (2010) A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21:3258–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You J-S, Hornberger TA (2011a) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589:5485–5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, Hornberger TA (2011b) Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J 25:1028–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman CA, Mayhew DL, Hornberger TA (2011c) Recent progress towards understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 23:1896–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gran P, Cameron-Smith D (2011) The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes. BMC Physiol 11:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC (1995) cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci U S A 92:7222–7226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves LM, He Y, Lambert J, Hunter D, Li X, Earp HS (1997) An intracellular calcium signal activates p70 but Not p90 ribosomal S6 kinase in liver epithelial cells. J Biol Chem 272:1920–1928

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Stevens DM, Thoreen CC et al (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKC[alpha], but Not S6K1. Dev Cell 11:859–871

    Article  CAS  PubMed  Google Scholar 

  • Gulati P, Gaspers LD, Dann SG et al (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7:456–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulve EA, Dice JF (1989) Regulation of protein synthesis and degradation in L8 myotubes. Effects of serum, insulin and insulin-like growth factors. Biochem J 260:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haar EV, S-i L, Bandhakavi S, Griffin TJ, Kim D-H (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323

    Article  CAS  Google Scholar 

  • Hall MN (2013) On mTOR nomenclature. Biochem Soc Trans 41:887–888

    Article  CAS  PubMed  Google Scholar 

  • Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge SD (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547:247–254

    Article  CAS  PubMed  Google Scholar 

  • Hamilton DL, Philp A, MacKenzie MG, Baar K (2010) A limited role for PI(3,4,5)P3 regulation in controlling skeletal muscle mass in response to resistance exercise. PLoS One 5:e11624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hannan KM, Brandenburger Y, Jenkins A et al (2003) mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF{dagger}. Mol Cell Biol 23:8862–8877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara K, Maruki Y, Long X et al (2002) Raptor, a binding partner of target of Rapamycin (TOR), mediates TOR action. Cell 110:177–189

    Article  CAS  PubMed  Google Scholar 

  • Harber MP, Crane JD, Dickinson JM, Jemiolo B, Raue U, Trappe TA, Trappe SW (2009a) Protein synthesis and the expression of growth-related genes are altered by running in human vastus lateralis and soleus muscles. Am J Physiol Regul Integr Comp Physiol 296:R708–R714

    Article  CAS  PubMed  Google Scholar 

  • Harber MP, Konopka AR, Douglass MD, Minchev K, Kaminsky LA, Trappe TA, Trappe S (2009b) Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol 297:R1452–R1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harber MP, Konopka AR, Jemiolo B, Trappe SW, Trappe TA, Reidy PT (2010) Muscle protein synthesis and gene expression during recovery from aerobic exercise in the fasted and fed states. Am J Physiol – Regul, Integr Comp Physiol 299:R1254–R1262

    Article  CAS  Google Scholar 

  • Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immuno-suppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341:758–760

    Article  CAS  PubMed  Google Scholar 

  • Haselbacher GK, Humbel RE, Thomas G (1979) Insulin-like growth factor: insulin or serum increase phosphorylation of ribosomal protein S6 during transition of stationary chick embryo fibroblasts into early G1 phase of the cell cycle. FEBS Lett 100:185–190

    Article  CAS  PubMed  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    Article  CAS  PubMed  Google Scholar 

  • Hill M, Wernig A, Goldspink G (2003) Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 203:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinnebusch AG, Lorsch JR (2012) The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 4:pii: a011544

    Google Scholar 

  • Holm L, van Hall G, Rose AJ, Miller BF, Doessing S, Richter EA, Kjaer M (2010) Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. Am J Physiol Endocrinol Metab 298:E257–E269

    Article  CAS  PubMed  Google Scholar 

  • Holz MK, Ballif BA, Gygi SP, Blenis J (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569–580

    Article  CAS  PubMed  Google Scholar 

  • Hornberger TA, Chien S (2006) Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem 97:1207–1216

    Article  CAS  PubMed  Google Scholar 

  • Hornberger TA, McLoughlin TJ, Leszczynski JK et al (2003) Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth. J Nutr 133:3091–3097

    CAS  PubMed  Google Scholar 

  • Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornberger TA, Armstrong DD, Koh TJ, Burkholder TJ, Esser KA (2005a) Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 288:C185–C194

    CAS  PubMed  Google Scholar 

  • Hornberger TA, Mateja RD, Chin ER, Andrews JL, Esser KA (2005b) Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle. J Appl Physiol 98:1562–1566

    Article  CAS  PubMed  Google Scholar 

  • Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci U S A 103:4741–4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Pang S, Kong X, Velleca M, Lawrence JC (1994) Molecular cloning and tissue distribution of PHAS-I, an intracellular target for insulin and growth factors. Proc Natl Acad Sci U S A 91:3730–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412:179–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Chen X, Chen D (2011) Myostatin: a novel insight into its role in metabolism, signal pathways, and expression regulation. Cell Signal 23:1441–1446

    Article  CAS  PubMed  Google Scholar 

  • Hudelmaier M, Wirth W, Himmer M, Ring-Dimitriou S, Sänger A, Eckstein F (2010) Effect of exercise intervention on thigh muscle volume and anatomical cross-sectional areas – quantitative assessment using MRI. Magn Reson Med 64:1713–1720

    Article  PubMed  Google Scholar 

  • Hulmi JJ, Walker S, Ahtiainen JP, Nyman K, Kraemer WJ, Hakkinen K (2012) Molecular signaling in muscle is affected by the specificity of resistance exercise protocol. Scand J Med Sci Sports 22:240–248

    Article  CAS  PubMed  Google Scholar 

  • Huo Y, Iadevaia V, Yao Z et al (2012) Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis. Biochem J 444:141–151

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda Si (2013a) Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med 19:101–106

    Article  CAS  PubMed  Google Scholar 

  • Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda Si (2013b) Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy. Channels 7:221–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumiya Y, Hopkins T, Morris C et al (2008) Fast/glycolytic muscle fiber growth reduces Fat mass and improves metabolic parameters in obese mice. Cell Metab 7:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaafar R, De Larichaudy J, Chanon S et al (2013) Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun Signal 11:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Goodman CA, Hornberger TA (2013a) The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. J Muscle Res Cell Motil, in press, doi: 10.1007/s10974-013-9367-4

    Google Scholar 

  • Jacobs BL, You J-S, Frey JW, Goodman CA, Gundermann DM, Hornberger TA (2013b) Eccentric contractions increase TSC2 phosphorylation and alter the targeting of TSC2 and mTOR to the lysosome. J Physiol 591:4611–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB (2007) Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 25:209–226

    Article  CAS  PubMed  Google Scholar 

  • Jefferies HB, Reinhard C, Kozma SC, Thomas G (1994) Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci U S A 91:4441–4445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J 16:3693–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jewell JL, Russell RC, Guan K-L (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H (2010) MTOR regulation of autophagy. FEBS Lett 584:1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungwon C, Chen J, Schreiber SL, Jon C (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273:239–242

    Article  Google Scholar 

  • Kang SA, Pacold ME, Cervantes CL et al (2013) mTORC1 phosphorylation sites encode their sensitivity to starvation and Rapamycin. Science 341

    Google Scholar 

  • Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ (2010) mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci U S A 107:11823–11828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelen KVD, Beyaert R, Inze D, Veylder LD (2009) Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 44:143–168

    Article  CAS  Google Scholar 

  • Kim JE, Chen J (2000) Cytoplasmic–nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci U S A 97:14340–14345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D-H, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Sarbassov DD, Ali SM et al (2003) GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895–904

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR (1999) Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol 31:25–29

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Horetsky RL, Jefferson LS (1998) Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem 273:30945–30953

    Article  CAS  PubMed  Google Scholar 

  • Konopka AR, Douglass MD, Kaminsky LA, Jemiolo B, Trappe TA, Trappe S, Harber MP (2010) Molecular adaptations to aerobic exercise training in skeletal muscle of older women. J Gerontol A Biol Sci Med Sci 65A:1201–1207

    Article  CAS  PubMed Central  Google Scholar 

  • Koopman R, Saris WH, Wagenmakers AJ, van Loon LJ (2007) Nutritional interventions to promote post-exercise muscle protein synthesis. Sports Med 37:895–906

    Article  PubMed  Google Scholar 

  • Kostyak JC, Kimball SR, Jefferson LS, Farrell PA (2001) Severe diabetes inhibits resistance exercise-induced increase in eukaryotic initiation factor 2B activity. J Appl Physiol 91:79–84

    CAS  PubMed  Google Scholar 

  • Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, Roth RA (2003) Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 278:10189–10194

    Article  CAS  PubMed  Google Scholar 

  • Kraemer WJ, Nindl BC, Ratamess NA et al (2004) Changes in muscle hypertrophy in women with periodized resistance training. Med Sci Sports Exerc 36:697–708

    Article  PubMed  Google Scholar 

  • Krieg J, Hofsteenge J, Thomas G (1988) Identification of the 40 S ribosomal protein S6 phosphorylation sites induced by cycloheximide. J Biol Chem 263:11473–11477

    CAS  PubMed  Google Scholar 

  • Kruppa J, Clemens MJ (1984) Differential kinetics of changes in the state of phosphorylation of ribosomal protein S6 and in the rate of protein synthesis in MPC 11 cells during tonicity shifts. EMBO J 3:95–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubica N, Kimball SR, Jefferson LS, Farrell PA (2004) Alterations in the expression of mRNAs and proteins that code for species relevant to eIF2B activity after an acute bout of resistance exercise. J Appl Physiol 96:679–687

    Article  CAS  PubMed  Google Scholar 

  • Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS (2005) Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 280:7570–7580

    Article  CAS  PubMed  Google Scholar 

  • Kubica N, Crispino JL, Gallagher JW, Kimball SR, Jefferson LS (2008) Activation of the mammalian target of rapamycin complex 1 is both necessary and sufficient to stimulate eukaryotic initiation factor 2B[var epsilon] mRNA translation and protein synthesis. Int J Biochem Cell Biol 40:2522–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR (1992) Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 358:70–73

    Article  CAS  PubMed  Google Scholar 

  • Lamming DW, Ye L, Katajisto P et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latres E, Amini AR, Amini AA et al (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280:2737–2744

    Article  CAS  PubMed  Google Scholar 

  • Lee NKL, MacLean HE (2011) Polyamines, androgens and skeletal muscle hypertrophy. J Cell Physiol 226:1453–1460

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB (2000) Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr 72:796–803

    CAS  PubMed  Google Scholar 

  • Leger B, Cartoni R, Praz M et al (2006) Akt signalling through GSK-3beta; mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576:923–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468

    Article  CAS  PubMed  Google Scholar 

  • Loh PG, Yang H-S, Walsh MA et al (2009) Structural basis for translational inhibition by the tumour suppressor Pdcd4. EMBO J 28:274–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long X, Ortiz-Vega S, Lin Y, Avruch J (2005) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280:23433–23436

    Article  CAS  PubMed  Google Scholar 

  • Lovell DI, Cuneo R, Gass GC (2010) Can aerobic training improve muscle strength and power in older men? J Aging Phys Act 18:14–26

    Article  PubMed  Google Scholar 

  • Lynch GS (2004) Tackling Australia’s future health problems: developing strategies to combat sarcopenia–age-related muscle wasting and weakness. Intern Med J 34:294–296

    Article  CAS  PubMed  Google Scholar 

  • Lynch GS, Ryall JG (2008) Role of {beta}-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 88:729–767

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–193

    Article  CAS  PubMed  Google Scholar 

  • MacDougall JD, Gibala MJ, Tarnopolsky MA, MacDonald JR, Interisano SA, Yarasheski KE (1995) The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol 20:480–486

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie MG, Hamilton DL, Murray JT, Baar K (2007) mVps34 is activated by an acute bout of resistance exercise. Biochem Soc Trans 035:1314–1316

    Article  CAS  Google Scholar 

  • Mahoney SJ, Dempsey JM, Blenis J (2009) Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. Prog Mol Biol Transl Sci 90C:53–107

    Article  CAS  Google Scholar 

  • Marino JS, Tausch BJ, Dearth CL et al (2008) {Beta}2-integrins contribute to skeletal muscle hypertrophy in mice. Am J Physiol Cell Physiol 295:C1026–C1036

    Article  CAS  PubMed  Google Scholar 

  • Martineau LC, Gardiner PF (2001) Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J Appl Physiol 91:693–702

    CAS  PubMed  Google Scholar 

  • Mascher H, Andersson H, Nilsson PA, Ekblom B, Blomstrand E (2007) Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise. Acta Physiol 191:67–75

    Article  CAS  Google Scholar 

  • Mascher H, Ekblom B, Rooyackers O, Blomstrand E (2011) Enhanced rates of muscle protein synthesis and elevated mTOR signalling following endurance exercise in human subjects. Acta Physiol 202:175–184

    Article  CAS  Google Scholar 

  • Matheny RW Jr, Nindl BC, Adamo ML (2010) Mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151:865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer C, Grummt I (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384–6391

    Article  CAS  PubMed  Google Scholar 

  • Mayhew DL, Hornberger TA, Lincoln HC, Bamman MM (2011) Eukaryotic initiation factor 2B{epsilon} (eIF2B{epsilon}) induces cap-dependent translation and skeletal muscle hypertrophy. J Physiol 589:3023–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCall GE, Byrnes WC, Dickinson A, Pattany PM, Fleck SJ (1996) Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol 81:2004–2012

    CAS  PubMed  Google Scholar 

  • McCarthy JJ (2011) The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev 39:150–154

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarthy JJ, Esser KA (2007) Counterpoint: satellite cell addition is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103:1100–1102; discussion 1102–1103

    Article  PubMed  Google Scholar 

  • McCarthy JJ, Mula J, Miyazaki M et al (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConell GK, Rattigan S, Lee-Young RS, Wadley GD, Merry TL (2012) Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism. Am J Physiol – Endocrinol Metab 303:E301–E307

    Article  CAS  PubMed  Google Scholar 

  • McKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, Goldspink G (1999) Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 516:583–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPhee JS, Williams AG, Degens H, Jones DA (2010) Inter-individual variability in adaptation of the leg muscles following a standardised endurance training programme in young women. Eur J Appl Physiol 109:1111–1118

    Article  PubMed  Google Scholar 

  • Meyuhas O, Dreazen A (2009) Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog Mol Biol Transl Sci 90C:109–153

    Article  CAS  Google Scholar 

  • Mieulet V, Roceri M, Espeillac C et al (2007) S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am J Physiol Cell Physiol 293:C712–C722

    Article  CAS  PubMed  Google Scholar 

  • Miller BF, Olesen JL, Hansen M et al (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol 567:1021–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA (2011) Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol 589:1831–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monier S, Le Cam A, Le Marchand-Brustel Y (1983) Insulin and insulin-like growth factor I. Effects on protein synthesis in isolated muscles from lean and goldthioglucose-obese mice. Diabetes 32:392–397

    Article  CAS  PubMed  Google Scholar 

  • Montine KS, Henshaw EC (1990) TPA stimulates S6 phosphorylation but not protein synthesis in Ehrlich cells. Biochem Biophys Res Commun 166:1340–1345

    Article  CAS  PubMed  Google Scholar 

  • Moore CEJ, Xie J, Gomez E, Herbert TP (2009) Identification of cAMP-dependent kinase as a third in vivo ribosomal protein S6 kinase in pancreatic β-cells. J Mol Biol 389:480–494

    Article  CAS  PubMed  Google Scholar 

  • Morrison DK (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol 4:pii: a011254

    Google Scholar 

  • Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V (2007) A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64:29–49

    Article  CAS  PubMed  Google Scholar 

  • Musaro A, McCullagh K, Paul A et al (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    Article  CAS  PubMed  Google Scholar 

  • Nakai N, Kawano F, Oke Y, Nomura S, Ohira T, Fujita R, Ohira Y (2010) Mechanical stretch activates signaling events for protein translation initiation and elongation in C2C12 myoblasts. Mol Cells 30:513–518

    Article  CAS  PubMed  Google Scholar 

  • Neff F, Flores-Dominguez D, Ryan DP et al (2013) Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest 123:3272–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nojima H, Tokunaga C, Eguchi S et al (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278:15461–15464

    Article  CAS  PubMed  Google Scholar 

  • Novak ML, Billich W, Smith SM, Sukhija KB, McLoughlin TJ, Hornberger TA, Koh TJ (2009) COX-2 inhibitor reduces skeletal muscle hypertrophy in mice. Am J Physiol Regul Integr Comp Physiol 296:R1132–R1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nygard O, Nilsson L (1990) Translational dynamics. Eur J Biochem 191:1–17

    Article  CAS  PubMed  Google Scholar 

  • O’Connor RS, Pavlath GK (2007) Point:counterpoint: satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103:1099–1100

    Article  PubMed  Google Scholar 

  • O’Connor RS, Pavlath GK, McCarthy JJ, Esser KA (2007) Last word on point:counterpoint: satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103:1107

    Article  PubMed  Google Scholar 

  • O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587:3691–3701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S (2013) Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 305:E760–E765

    Article  CAS  PubMed  Google Scholar 

  • Ohanna M, Sobering AK, Lapointe T et al (2005) Atrophy of S6K1(−/−) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7:286–294

    Article  CAS  PubMed  Google Scholar 

  • Oshiro N, Yoshino K-I, Hidayat S et al (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9:359–366

    Article  CAS  PubMed  Google Scholar 

  • Oshiro N, Takahashi R, Yoshino K-I et al (2007) The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282:20329–20339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overgaard K, Fredsted A, Hyldal A, Ingemann-Hansen T, Gissel H, Clausen T (2004) Effects of running distance and training on Ca2+ content and damage in human muscle. Med Sci Sports Exerc 36:821–829

    Article  CAS  PubMed  Google Scholar 

  • Park I-H, Bachmann R, Shirazi H, Chen J (2002) Regulation of ribosomal S6 kinase 2 by mammalian target of rapamycin. J Biol Chem 277:31423–31429

    Article  CAS  PubMed  Google Scholar 

  • Park IH, Erbay E, Nuzzi P, Chen J (2005) Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1. Exp Cell Res 309:211–219

    Article  CAS  PubMed  Google Scholar 

  • Parkington JD, Siebert AP, LeBrasseur NK, Fielding RA (2003) Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 285:R1086–R1090

    Article  CAS  PubMed  Google Scholar 

  • Pause A, Belsham GJ, Gingras A-C, Donze O, Lin T-A, Lawrence JC, Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767

    Article  CAS  PubMed  Google Scholar 

  • Pearce LR, Huang X, Boudeau J et al (2007) Identification of protor as a novel rictor-binding component of mTOR complex-2. Biochem J 405:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall RE, Thomas G (1995) The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 14:5279–5287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pende M, Um SH, Mieulet V et al (2004) S6K1−/−/S6K2−/− mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24:3112–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrone CE, Fenwick-Smith D, Vandenburgh HH (1995) Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells. J Biol Chem 270:2099–2106

    Article  CAS  PubMed  Google Scholar 

  • Perry J, Kleckner N (2003) The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112:151–155

    Article  CAS  PubMed  Google Scholar 

  • Peterson RT, Desai BN, Hardwick JS, Schreiber SL (1999) Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12–rapamycinassociated protein. Proc Natl Acad Sci U S A 96:4438–4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson TR, Laplante M, Thoreen CC et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273:E99–E107

    CAS  PubMed  Google Scholar 

  • Phillips BE, Hill DS, Atherton PJ (2012) Regulation of muscle protein synthesis in humans. Curr Opin Clin Nutr Metab Care 15:58–63

    Article  CAS  PubMed  Google Scholar 

  • Philp A, Hamilton DL, Baar K (2011) Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol 110:561–568

    Article  CAS  PubMed  Google Scholar 

  • Piccirillo R, Demontis F, Perrimon N, Goldberg AL (2013) Mechanisms of muscle growth and atrophy in mammals and Drosophila. Dev Dyn, in press, doi: 10.1002/dvdy.24036:n/a-n/a

  • Pikosky MA, Gaine PC, Martin WF, Grabarz KC, Ferrando AA, Wolfe RR, Rodriguez NR (2006) Aerobic exercise training increases skeletal muscle protein turnover in healthy adults at rest. J Nutr 136:379–383

    CAS  PubMed  Google Scholar 

  • Poulin F, Gingras A-C, Olsen H, Chevalier S, Sonenberg N (1998) 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem 273:14002–14007

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price DJ, Gunsalus JR, Avruch J (1990) Insulin activates a 70-kDa S6 kinase through serine/threonine-specific phosphorylation of the enzyme polypeptide. Proc Natl Acad Sci U S A 87:7944–7948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE (1992) Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 257:973–977

    Article  CAS  PubMed  Google Scholar 

  • Proud CG (2005) eIF2 and the control of cell physiology. Semin Cell Dev Biol 16:3–12

    Article  CAS  PubMed  Google Scholar 

  • Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G (1998) Phosphorylation and activation of p70s6k by PDK1. Science 279:707–710

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Rangel I, Bracho-Valdes I, Vazquez-Macias A, Carretero-Ortega J, Reyes-Cruz G, Vazquez-Prado J (2011) Regulation of mTORC1 complex assembly and signaling by GRp58/ERp57. Mol Cell Biol 31:1657–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reidy PT, Konopka AR, Hinkley JM, Undem MK, Harber MP (2013) The effect of feeding during recovery from aerobic exercise on skeletal muscle intracellular signaling. Int J Sport Nutr Exerc Metab, in press

    Google Scholar 

  • Rommel C, Bodine SC, Clarke BA et al (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Rose AJ, Richter EA (2009) Regulatory mechanisms of skeletal muscle protein turnover during exercise. J Appl Physiol 106:1702–1711

    Article  CAS  PubMed  Google Scholar 

  • Rosner M, Hengstschläger M (2008) Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 17:2934–2948

    Article  CAS  PubMed  Google Scholar 

  • Ross A, Leveritt M (2001) Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med 31:1063–1082

    Article  CAS  PubMed  Google Scholar 

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A 101:13489–13494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux PP, Shahbazian D, Vu H et al (2007) RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates Cap-dependent translation. J Biol Chem 282:14056–14064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundqvist HC, Lilja MR, Rooyackers O, Odrzywol K, Murray JT, Esbjornsson M, Jansson E (2013) Nutrient ingestion increased mTOR signaling, but not hVps34 activity in human skeletal muscle after sprint exercise. Physiol Rep 1:e00076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruvinsky I, Sharon N, Lerer T et al (2005) Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19:2199–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35–43

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DM, Barrow RK, Blackshaw S et al (1999) Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 284:1161–1164

    Article  CAS  PubMed  Google Scholar 

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270:815–822

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Araki Y, Kontani K, Nishina H, Katada T (2005) Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J Biochem 137:423–430

    Article  CAS  PubMed  Google Scholar 

  • Sancak Y, Thoreen CC, Peterson TR et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915

    Article  CAS  PubMed  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology 23:160–170

    Article  CAS  PubMed  Google Scholar 

  • Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45:2121–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sengupta S et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168

    Article  CAS  PubMed  Google Scholar 

  • Sasai N, Agata N, Inoue-Miyazu M, Kawakami K, Kobayashi K, Sokabe M, Hayakawa K (2010) Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubes. Muscle Nerve 41:100–106

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Nakashima A, Guo L, Tamanoi F (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 284:12783–12791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Hongu T, Sakamoto M, Funakoshi Y, Kanaho Y (2013) Molecular mechanisms of N-formyl-methionyl-leucyl-phenylalanine-induced superoxide generation and degranulation in mouse neutrophils: phospholipase D is dispensable. Mol Cell Biol 33:136–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schalm SS, Blenis J (2002) Identification of a conserved motif required for mTOR signaling. Curr Biol 12:632–639

    Article  CAS  PubMed  Google Scholar 

  • Schalm SS, Fingar DC, Sabatini DM, Blenis J (2003) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13:797–806

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schieke SM, Phillips D, McCoy JP Jr, Aponte AM, Shen R-F, Balaban RS, Finkel T (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281:27643–27652

    Article  CAS  PubMed  Google Scholar 

  • Seene T, Kaasik P, Alev K (2011) Muscle protein turnover in endurance training: a review. Int J Sports Med 32:905–911

    Article  CAS  PubMed  Google Scholar 

  • Seguin R, Nelson ME (2003) The benefits of strength training for older adults. Am J Prev Med 25:141–149

    Article  PubMed  Google Scholar 

  • Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35:S7–S14

    Article  CAS  Google Scholar 

  • Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28:727–732

    Article  CAS  Google Scholar 

  • Shahbazian D, Roux PP, Mieulet V et al (2006) The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 25:2781–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheffield-Moore M, Yeckel CW, Volpi E et al (2004) Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol Endocrinol Metab 287:E513–E522

    Article  CAS  PubMed  Google Scholar 

  • Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC (1998) Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17:6649–6659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shor B, Wu J, Shakey Q, Toral-Barza L, Shi C, Follettie M, Yu K (2010) Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J Biol Chem 285:15380–15392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Short KR, Vittone JL, Bigelow ML, Proctor DN, Nair KS (2004) Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab 286:E92–E101

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Wejksnora PJ, Warner JR, Rubin CS, Rosen OM (1979) Insulin-stimulated protein phosphorylation in 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 76:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LW, Smith JD, Criswell DS (2002) Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol 92:2005–2011

    Article  CAS  PubMed  Google Scholar 

  • Soltow QA, Betters JL, Sellman JE, Lira VA, Long JH, Criswell DS (2006) Ibuprofen inhibits skeletal muscle hypertrophy in rats. Med Sci Sports Exerc 38:840–846

    Article  CAS  PubMed  Google Scholar 

  • Spangenburg EE, Le Roith D, Ward CW, Bodine SC (2008) A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol 586:283–291

    Article  CAS  PubMed  Google Scholar 

  • Srikanthan P, Karlamangla AS (2011) Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from The Third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab 96:2898–2903

    Article  CAS  PubMed  Google Scholar 

  • Stambolic V, Woodgett JR (1994) Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303(Pt 3):701–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA (1990) Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol Occup Physiol 60:71–79

    Article  CAS  PubMed  Google Scholar 

  • Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T (2001) An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol Cell 8:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Stolovich M, Tang H, Hornstein E et al (2002) Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 22:8101–8113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su W, Yeku O, Olepu S et al (2009) 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol Pharmacol 75:437–446

    Article  CAS  PubMed  Google Scholar 

  • Suzuki C, Garces RG, Edmonds KA, Hiller S, Hyberts SG, Marintchev A, Wagner G (2008) PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. Proc Natl Acad Sci U S A 105:3274–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Hornstein E, Stolovich M et al (2001) Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by Rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol 21:8671–8683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Yuan J, Chen X et al (2006) Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway. J Biochem Mol Biol 39:626–635

    CAS  PubMed  Google Scholar 

  • Tannerstedt J, Apro W, Blomstrand E (2009) Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol 106:1412–1418

    Article  CAS  PubMed  Google Scholar 

  • Tas PWL, Martini OHW (1987) Are highly phosphorylated 40-S subunits preferentially utilized during protein synthesis in a cell-free system from HeLa cells? Eur J Biochem 163:561–567

    Article  CAS  PubMed  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Terzis G, Georgiadis G, Stratakos G et al (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102:145–152

    Article  CAS  PubMed  Google Scholar 

  • Thalacker-Mercer A, Stec M, Cui X, Cross J, Windham S, Bamman M (2013) Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy. Physiol Genomics 45:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson DM, Gordon SE (2006) Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle. J Physiol 574:291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson DM, Fick CA, Gordon SE (2008) AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol 104:625–632

    Article  CAS  PubMed  Google Scholar 

  • Thomson DM, Brown JD, Fillmore N et al (2009) AMP-activated protein kinase response to contractions and treatment with the AMPK activator AICAR in young adult and old skeletal muscle. J Physiol 587:2077–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoreen CC, Sabatini DM (2009) Rapamycin inhibits mTORC1, but not completely. Autophagy 5:725–726

    Article  CAS  PubMed  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW et al (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ (2011) Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev: RNA 2:277–298

    Article  CAS  PubMed  Google Scholar 

  • Trappe TA, White F, Lambert CP, Cesar D, Hellerstein M, Evans WJ (2002) Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab 282:E551–E556

    Article  CAS  PubMed  Google Scholar 

  • Tsang CK, Liu H, Zheng XFS (2010) MTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell Cycle 9:953–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuckow AP, Vary TC, Kimball SR, Jefferson LS (2010) Ectopic expression of eIF2B{varepsilon} in rat skeletal muscle rescues the sepsis-induced reduction in guanine nucleotide exchange activity and protein synthesis. Am J Physiol Endocrinol Metab 299:E241–E248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiumi T, Kikuchi M, Ogata K (1986) Cross-linking study on protein neighborhoods at the subunit interface of rat liver ribosomes with 2-iminothiolane. J Biol Chem 261:9663–9667

    CAS  PubMed  Google Scholar 

  • Vandenburgh HH (1987) Motion into mass: how does tension stimulate muscle growth? Med Sci Sports Exerc 19:S142–S149

    CAS  PubMed  Google Scholar 

  • Verney J, Kadi F, Charifi N et al (2008) Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle Nerve 38:1147–1154

    Article  PubMed  Google Scholar 

  • Veverka V, Crabbe T, Bird I, Lennie G, Muskett FW, Taylor RJ, Carr MD (2008) Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene 27:585–595

    Article  CAS  PubMed  Google Scholar 

  • Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28:721–726

    Article  CAS  Google Scholar 

  • von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G (1996) 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc Natl Acad Sci U S A 93:4076–4080

    Article  Google Scholar 

  • von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G (1997) The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin- sensitive point immediately upstream of p70s6k. Mol Cell Biol 17:5426–5436

    Article  Google Scholar 

  • Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG (2001) Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J 20:4370–4379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Harris TE, Roth RA, Lawrence JC Jr (2007) PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 282:20036–20044

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Harris TE, Lawrence JC Jr (2008) Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 283:15619–15627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Mascher H, Psilander N, Blomstrand E, Sahlin K (2011) Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol 111:1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Welle S, Bhatt K, Thornton CA (1999) Stimulation of myofibrillar synthesis by exercise is mediated by more efficient translation of mRNA. J Appl Physiol 86:1220–1225

    CAS  PubMed  Google Scholar 

  • Welsh GI, Miyamoto S, Price NT, Safer B, Proud CG (1996) T-cell activation leads to rapid stimulation of translation initiation factor eIF2B and inactivation of glycogen synthase kinase-3. J Biol Chem 271:11410–11413

    Article  CAS  PubMed  Google Scholar 

  • West DW, Kujbida GW, Moore DR et al (2009) Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol 587:5239–5247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JP, Reecy JM, Washington TA et al (2009) Overload-induced skeletal muscle extracellular matrix remodelling and myofibre growth in mice lacking IL-6. Acta Physiol 197:321–332

    Article  CAS  Google Scholar 

  • Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586:3701–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witard OC, Tieland M, Beelen M, Tipton KD, van Loon LJ, Koopman R (2009) Resistance exercise increases postprandial muscle protein synthesis in humans. Med Sci Sports Exerc 41:144–154

    Article  CAS  PubMed  Google Scholar 

  • Withers DJ, Ouwens DM, Nave BT et al (1997) Expression, enzyme activity, and subcellular localization of mammalian target of rapamycin in insulin-responsive cells. Biochem Biophys Res Commun 241:704–709

    Article  CAS  PubMed  Google Scholar 

  • Witkowski S, Lovering RM, Spangenburg EE (2010) High-frequency electrically stimulated skeletal muscle contractions increase p70s6k phosphorylation independent of known IGF-I sensitive signaling pathways. FEBS Lett 584:2891–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Salloum D, Medlin PS, Saqcena M, Yellen P, Perrella B, Foster DA (2011) Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1). J Biol Chem 286:25477–25486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Biggs RB, Booth FW (1993) Insulin-like growth factor immunoreactivity increases in muscle after acute eccentric contractions. J Appl Physiol 74:410–414

    CAS  PubMed  Google Scholar 

  • Yanase Y, Carvou N, Frohman MA, Cockcroft S (2010) Reversible bleb formation in mast cells stimulated with antigen is Ca2+/calmodulin-dependent and bleb size is regulated by ARF6. Biochem J 425:179–193

    Article  CAS  Google Scholar 

  • Yang S, Alnaqeeb M, Simpson H, Goldspink G (1996) Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil 17:487–495

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Brunn GJ, Lawrence JC Jr (1999) Mutational analysis of sites in the translational regulator, PHAS-I, that are selectively phosphorylated by mTOR. FEBS Lett 453:387–390

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) MTOR kinase structure, mechanism and regulation. Nature 497:217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon M-S, Du G, Backer JM, Frohman MA, Chen J (2011) Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J Cell Biol 195:435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You JS, Frey JW, Hornberger TA (2012) Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid. PLoS One 7:e47258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J-S, Lincoln HC, Kim C-R, Frey JW, Goodman CA, Zhong X-P, Hornberger TA (2013) The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J Biol Chem, in press, doi: 10.1074/jbc.M113.531392

    Google Scholar 

  • Yu K, Toral-Barza L, Shi C et al (2009) Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 69:6232–6240

    Article  CAS  PubMed  Google Scholar 

  • Zargar S, Moreira TS, Samimi-Seisan H et al (2011) Skeletal muscle protein synthesis and the abundance of the mRNA translation initiation repressor PDCD4 are inversely regulated by fasting and refeeding in rats. Am J Physiol Endocrinol Metab 300:E986–E992

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578–581

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bokov A, Gelfond J et al (2013) Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci, in press, doi: 10.1093/gerona/glt056

    Google Scholar 

  • Zhao J, Yuan X, Frödin M, Grummt I (2003) ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol Cell 11:405–413

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xiong X, Sun Y (2011) DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 44:304–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Zhou H, Zhao X et al (2012) Phosphatidic acid mediates the targeting of tBid to induce lysosomal membrane permeabilization and apoptosis. J Lipid Res 53:2102–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant AR063256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Goodman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goodman, C.A. (2013). The Role of mTORC1 in Regulating Protein Synthesis and Skeletal Muscle Mass in Response to Various Mechanical Stimuli. In: Nilius, B., Gudermann, T., Jahn, R., Lill, R., Offermanns, S., Petersen, O.H. (eds) Reviews of Physiology, Biochemistry and Pharmacology 166. Reviews of Physiology, Biochemistry and Pharmacology, vol 166. Springer, Cham. https://doi.org/10.1007/112_2013_17

Download citation

Publish with us

Policies and ethics