Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Selection of regulatory T cells in the thymus

Key Points

  • The specificity of the T cell receptor (TCR) seems to be the primary determinant for instructing the thymic development of FOXP3+CD4+ natural regulatory T (TReg) cells.

  • The thymic development of TReg cells is regulated by an antigen-specific 'niche', which is potentially determined by the quality and potency of the self-antigen–TCR interaction.

  • The range of self-reactivity that is permissive for the selection of natural TReg cells may be broad and substantially higher than that driving positive selection.

  • Distinct signals are used at different stages of thymic TReg cell development, with TCR and co-stimulatory signalling required initially, followed by cytokine signalling to induce forkhead box P3 (FOXP3) expression.

  • The nuclear factor-κB (NF-κB) family member cREL is likely to be the molecular link between the TCR and the induction of FOXP3 expression.

  • Thymic antigen-presenting cells, including medullary thymic epithelial cells and various dendritic cell subsets, express and present a diverse array of antigens and may select distinct repertoires of natural TReg cells.

Abstract

The generation of regulatory T (TReg) cells in the thymus is crucial for immune homeostasis and self-tolerance. Recent discoveries have revealed the cellular and molecular mechanisms that govern the differentiation of a subset of developing thymocytes into natural TReg cells. Several models, centred on the self-reactivity of the T cell receptor (TCR), have been proposed to explain the generation of a TReg cell population that is cognizant of self. Several molecular pathways link TCR and cytokine signalling with the expression of the TReg cell-associated transcription factor forkhead box P3 (FOXP3). Moreover, interplay between thymocytes and thymic antigen-presenting cells is also involved in TReg cell generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models for thymic TReg cell development.
Figure 2: Niche hypothesis for TReg cell development.
Figure 3: Factors that determine TReg cell development based on self-reactivity.
Figure 4: Models of self-reactivity and TReg cell generation.
Figure 5: Molecular mechanisms linking TCR specificity to FOXP3 expression.
Figure 6: A two-step model for TReg cell development.
Figure 7: The antigenic repertoire presented by thymic medullary APCs.

Similar content being viewed by others

References

  1. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nature Immunol. 11, 7–13 (2010).

    Article  CAS  Google Scholar 

  2. Rudensky, A. Y. Regulatory T cells and Foxp3. Immunol. Rev. 241, 260–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. d'Hennezel, E. et al. FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. N. Engl. J. Med. 361, 1710–1713 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Ramsdell, F. Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity 19, 165–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Lahl, K. et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204, 57–63 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol. 8, 191–197 (2007).

    CAS  Google Scholar 

  7. Nishizuka, Y. & Sakakura, T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166, 753–755 (1969).

    Article  CAS  PubMed  Google Scholar 

  8. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Fontenot, J. D., Dooley, J. L., Farr, A. G. & Rudensky, A. Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 202, 901–906 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haribhai, D. et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 35, 109–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gershon, R. K. & Kondo, K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18, 723–737 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  14. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  15. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  16. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nature Immunol. 3, 756–763 (2002).

    Article  CAS  Google Scholar 

  17. Knoechel, B., Lohr, J., Kahn, E., Bluestone, J. A. & Abbas, A. K. Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J. Exp. Med. 202, 1375–1386 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baldwin, T. A., Sandau, M. M., Jameson, S. C. & Hogquist, K. A. The timing of TCRα expression critically influences T cell development and selection. J. Exp. Med. 202, 111–121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maloy, K. J. & Powrie, F. Regulatory T cells in the control of immune pathology. Nature Immunol. 2, 816–822 (2001).

    Article  CAS  Google Scholar 

  20. Pacholczyk, R., Ignatowicz, H., Kraj, P. & Ignatowicz, L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 25, 249–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Wong, J. et al. Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J. Immunol. 178, 7032–7041 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Hsieh, C.-S. et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21, 267–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Shih, F. F., Mandik-Nayak, L., Wipke, B. T. & Allen, P. M. Massive thymic deletion results in systemic autoimmunity through elimination of CD4+ CD25+ T regulatory cells. J. Exp. Med. 199, 323–335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Santen, H.-M., Benoist, C. & Mathis, D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J. Exp. Med. 200, 1221–1230 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pennington, D. J. et al. Early events in the thymus affect the balance of effector and regulatory T cells. Nature 444, 1073–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Pacholczyk, R. et al. Nonself-antigens are the cognate specificities of Foxp3+ regulatory T cells. Immunity 27, 493–504 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leung, M. W., Shen, S. & Lafaille, J. J. TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. J. Exp. Med. 206, 2121–2130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Atibalentja, D. F., Byersdorfer, C. A. & Unanue, E. R. Thymus–blood protein interactions are highly effective in negative selection and regulatory T cell induction. J. Immunol. 183, 7909–7918 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Bautista, J. L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nature Immunol. 10, 610–617 (2009).

    Article  CAS  Google Scholar 

  30. Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011). By using Nur77 –GFP as a reporter for TCR stimulation, this study correlated the level of TCR signal received with the potential for T Reg cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dipaolo, R. J. & Shevach, E. M. CD4+ T-cell development in a mouse expressing a transgenic TCR derived from a Treg. Eur. J. Immunol. 39, 234–240 (2008).

    Article  CAS  Google Scholar 

  32. Killebrew, J. R. et al. A self-reactive TCR drives the development of Foxp3+ regulatory T cells that prevent autoimmune disease. J. Immunol. 187, 861–869 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Hsieh, C. S., Zheng, Y., Liang, Y., Fontenot, J. D. & Rudensky, A. Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nature Immunol. 7, 401–410 (2006).

    Article  CAS  Google Scholar 

  34. Lio, C. W. & Hsieh, C. S. Becoming self-aware: the thymic education of regulatory T cells. Curr. Opin. Immunol. 23, 213–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Lo, W. L. et al. An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells. Nature Immunol. 10, 1155–1161 (2009).

    Article  CAS  Google Scholar 

  36. Ebert, P. J., Jiang, S., Xie, J., Li, Q. J. & Davis, M. M. An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nature Immunol. 10, 1162–1169 (2009).

    Article  CAS  Google Scholar 

  37. Long, M., Park, S. G., Strickland, I., Hayden, M. S. & Ghosh, S. Nuclear factor-κB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31, 921–931 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Cozzo Picca, C. et al. CD4+CD25+Foxp3+ regulatory T cell formation requires more specific recognition of a self-peptide than thymocyte deletion. Proc. Natl Acad. Sci. USA 108, 14890–14895 (2011). This study demonstrated that, in addition to avidity, the quality or affinity of the interaction between a TCR and a peptide–MHC complex is important for thymic T Reg cell selection.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Riley, M. P. et al. Graded deletion and virus-induced activation of autoreactive CD4+ T cells. J. Immunol. 165, 4870–4876 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Hinterberger, M. et al. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nature Immunol. 11, 512–519 (2010). By diminishing antigen presentation by mTECs using shRNA-mediated knockdown of CIITA expression, this group showed that decreasing the avidity of the mTEC–thymocyte interaction can shift the cell fate from deletion to T Reg cell selection.

    Article  CAS  Google Scholar 

  41. Feuerer, M. et al. Enhanced thymic selection of FoxP3+ regulatory T cells in the NOD mouse model of autoimmune diabetes. Proc. Natl Acad. Sci. USA 104, 18181–18186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Romagnoli, P., Tellier, J. & van Meerwijk, J. P. Genetic control of thymic development of CD4+CD25+FoxP3+ regulatory T lymphocytes. Eur. J. Immunol. 35, 3525–3532 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Palmer, E. & Naeher, D. Affinity threshold for thymic selection through a T-cell receptor–co-receptor zipper. Nature Rev. Immunol. 9, 207–213 (2009).

    CAS  Google Scholar 

  45. Gottschalk, R. A., Corse, E. & Allison, J. P. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J. Exp. Med. 207, 1701–1711 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hinterberger, M., Wirnsberger, G. & Klein, L. B7/CD28 in central tolerance: costimulation promotes maturation of regulatory T cell precursors and prevents their clonal deletion. Front. Immunol. 2, 1–12 (2011).

    Article  Google Scholar 

  47. Le Borgne, M. et al. The impact of negative selection on thymocyte migration in the medulla. Nature Immunol. 10, 823–830 (2009).

    Article  CAS  Google Scholar 

  48. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lathrop, S. K., Santacruz, N. A., Pham, D., Luo, J. & Hsieh, C. S. Antigen-specific peripheral shaping of the natural regulatory T cell population. J. Exp. Med. 205, 3105–3117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taguchi, O. et al. Tissue-specific suppressor T cells involved in self-tolerance are activated extrathymically by self-antigens. Immunology 82, 365–369 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Seddon, B. & Mason, D. Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J. Exp. Med. 189, 877–882 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wheeler, K. M., Samy, E. T. & Tung, K. S. Cutting edge: normal regional lymph node enrichment of antigen-specific regulatory T cells with autoimmune disease-suppressive capacity. J. Immunol. 183, 7635–7638 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011). This study showed that T Reg cells can differentiate into cells with 'memory' characteristics that reside in the tissue and diminish recurrent autoimmune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bopp, T. et al. NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J. Exp. Med. 201, 181–187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oh-Hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nature Immunol. 9, 432–443 (2008).

    Article  CAS  Google Scholar 

  56. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunol. 12, 295–303 (2011).

    Article  CAS  Google Scholar 

  58. Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nature Immunol. 11, 618–627 (2010).

    CAS  Google Scholar 

  59. Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harada, Y. et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 207, 1381–1391 (2010). References 58–60 were three independent studies that demonstrated the importance of FOXO in the thymic development of T Reg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wirnsberger, G., Mair, F. & Klein, L. Regulatory T cell differentiation of thymocytes does not require a dedicated antigen-presenting cell but is under T cell-intrinsic developmental control. Proc. Natl Acad. Sci. USA 106, 10278–10283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ruan, Q. et al. Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity 31, 932–940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010). References 37, 62 and 63 demonstrated that the NF-κB factor cREL is necessary and sufficient for inducing the differentiation of thymic T Reg cells. In addition, the analysis of the Foxp3 locus in this study revealed a conserved non-coding sequence (CNS3) as an important cis -element for the induction of Foxp3 expression during thymic T Reg cell development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feuerer, M., Hill, J. A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nature Immunol. 10, 689–695 (2009).

    Article  CAS  Google Scholar 

  65. Lohr, J., Knoechel, B., Kahn, E. C. & Abbas, A. K. Role of B7 in T cell tolerance. J. Immunol. 173, 5028–5035 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nature Immunol. 6, 152–162 (2005).

    Article  CAS  Google Scholar 

  67. Lio, C. W., Dodson, L. F., Deppong, C. M., Hsieh, C. S. & Green, J. M. CD28 facilitates the generation of Foxp3 cytokine responsive regulatory T cell precursors. J. Immunol. 184, 6007–6013 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Spence, P. J. & Green, E. A. Foxp3+ regulatory T cells promiscuously accept thymic signals critical for their development. Proc. Natl Acad. Sci. USA 105, 973–978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lio, C. W. & Hsieh, C. S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nature Immunol. 6, 1142–1151 (2005).

    Article  CAS  Google Scholar 

  72. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007). Together with reference 70, this study demonstrates that the development of thymic T Reg cells can be divided into at least two steps based on the dependence on TCR stimulation: a proper TCR signal probably instructs thymocytes to develop into FOXP3 T Reg cell precursors, which then express FOXP3 after acquiring an IL-2 signal without a continuous TCR signal.

    Article  CAS  PubMed  Google Scholar 

  74. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yao, Z. et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109, 4368–4375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Burchill, M. A. et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28, 112–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schallenberg, S., Tsai, P. Y., Riewaldt, J. & Kretschmer, K. Identification of an immediate Foxp3 precursor to Foxp3+ regulatory T cells in peripheral lymphoid organs of nonmanipulated mice. J. Exp. Med. 207, 1393–1407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Thornton, A. M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nature Immunol. 9, 632–640 (2008).

    Article  CAS  Google Scholar 

  82. Ouyang, W., Beckett, O., Ma, Q. & Li, M. O. Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wirnsberger, G., Hinterberger, M. & Klein, L. Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes. Immunol. Cell Biol. 89, 45–53 (2011).

    Article  PubMed  Google Scholar 

  84. Bensinger, S. J., Bandeira, A., Jordan, M. S., Caton, A. J. & Laufer, T. M. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+ CD25+ immunoregulatory T cells. J. Exp. Med. 194, 427–438 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Liston, A. et al. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc. Natl Acad. Sci. USA 105, 11903–11908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wan, Y. Y. & Flavell, R. A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl Acad. Sci. USA 102, 5126–5131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cabarrocas, J. et al. Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proc. Natl Acad. Sci. USA 103, 8453–8458 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, H. M. & Hsieh, C. S. Rare development of Foxp3+ thymocytes in the CD4+CD8+ subset. J. Immunol. 183, 2261–2266 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nature Immunol. 8, 351–358 (2007).

    Article  CAS  Google Scholar 

  91. Proietto, A. I. et al. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc. Natl Acad. Sci. USA 105, 19869–19874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nature Rev. Immunol. 9, 833–844 (2009).

    Article  CAS  Google Scholar 

  93. Li, J., Park, J., Foss, D. & Goldschneider, I. Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J. Exp. Med. 206, 607–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mathis, D. & Benoist, C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Koble, C. & Kyewski, B. The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J. Exp. Med. 206, 1505–1513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Klein, L., Hinterberger, M., von Rohrscheidt, J. & Aichinger, M. Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol. 32, 188–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Hubert, F. X. et al. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood 118, 2462–2472 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Gallegos, A. M. & Bevan, M. J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Daniely, D., Kern, J., Cebula, A. & Ignatowicz, L. Diversity of TCRs on natural Foxp3+ T cells in mice lacking Aire expression. J. Immunol. 184, 6865–6873 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chyi-Song Hsieh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

TCR avidity

The combined strength of interaction between the antigen receptors on a single T cell and multiple peptide–MHC complexes on the antigen-presenting cell. The avidity can be broadly described as a function of the TCR affinity and the number of peptide–MHC complexes.

Positive selection

The process by which immature CD4+CD8+ double-positive thymocytes expressing T cell receptors that are able to recognize self-peptide–MHC complexes can proceed during the T cell maturation process into CD4+ or CD8+ single-positive thymocytes. This selection process is important for the generation of T cells that are restricted to the hosts MHC molecules.

Negative selection

The process by which developing T cells expressing T cell receptors that are highly reactive to self antigens presented on thymic antigen-presenting cells are eliminated via apoptosis.

Medullary thymic epithelial cells

(mTECs). A specialized type of epithelial cell located in the thymic medulla that is capable of expressing and presenting tissue-specific antigens via an AIRE-dependent mechanism. mTECs have been implicated in the establishment of self-tolerance.

TCR affinity

The strength of interaction between the T cell receptor and a single peptide–MHC complex.

Cortical thymic epithelial cells

(cTECs). Epithelial cells located in the thymic cortex that are able to positively select immature double-positive thymocytes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, CS., Lee, HM. & Lio, CW. Selection of regulatory T cells in the thymus. Nat Rev Immunol 12, 157–167 (2012). https://doi.org/10.1038/nri3155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3155

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing