Skip to main content

Advertisement

Log in

Algae-Based Bioplastic for Packaging: A Decade of Development and Challenges (2010–2020)

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The overwhelming production of plastic surpassed the rate at which they can decompose on the surface of the earth and caused environmental pollution globally, whereby packaging waste contributed almost one-third of plastic waste. Hence, as an alternative to plastic, algae emerged as one of the most sustainable alternative sources for bioplastic production due to their fast growth rate and the ability to withstand harsh environments and grow on non-arable land. These properties have outgrown most terrestrial plants as promising feedstocks for bioplastic production. This review provides a detailed survey of the literature published from 2010 to 2020 on the potential characteristics of different biopolymers derived from algae and their applications for packaging purposes. The sustainable development of algae as bioplastics for packaging contributes to minimising resource consumption, waste generation and regulating greenhouse gas emissions. The circular economy of algae-based bioplastic production is also discussed in this review.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BCE:

Black chokeberry extract

CO:

Carbon monoxide

DOC:

Degree of crystallinity

DOP:

Degree of polymerization

DSC:

Different scanning calorimetry

EDTA:

Ethylenediaminetetraacetic acid

EVOH:

Ethylene vinyl alcohol

FT-IR:

Fourier-transform infrared spectroscopy

G:

Guluronic acid

GLY:

Glycerol

LBG:

Locust bean gum

LCA:

Life cycle assessment

LIGS:

Low-industrial grade seaweeds

M:

Mannuronic acid

MC:

Methylcellulose

MFC:

Microfibrillated cellulose

MMT:

Montmorillonite

NaOH:

Sodium hydroxide

NFC:

Nanofibrillated cellulose

NR:

Latex natural rubber lattex

PA:

Polyamide

PBS:

Polybutylene succinate

PBAT:

Polybutylene adipate terephthalate

PCL:

Polycaprolactone

PE:

Polyethylene

PET:

Polyethylene terephthalate

PGA:

Poly (glycolic acid)

PHA:

Polyhydroxyalkanoates

PHB:

Polyhydrobutyrate

PLA:

Polylactic acid

PP:

Polypropylene

PS:

Polystyrene

PVC:

Polyvinyl chloride

SEM:

Scanning electron microscope

SPI:

Soy protein isolate

TGA:

Thermogravimetric analysis

WVP:

Water vapour permeability

YOPE:

Yellow onion peel extract

References

  1. Tiseo I (2021) Plastic waste worldwide - statistics & facts | Statista. https://www.statista.com/topics/5401/global-plastic-waste/. accessed 12 Aug 2021

  2. Wang C, Zhao J, Xing B (2021) Environmental source, fate, and toxicity of microplastics. J Hazard Mater 407:124357. https://doi.org/10.1016/J.JHAZMAT.2020.124357

    Article  CAS  PubMed  Google Scholar 

  3. Ritchie H, Roser M (2018) Plastic Pollution. https://ourworldindata.org/plastic-pollution. Accessed 28 Oct 2020

  4. Abrha H, Cabrera J, Dai Y et al (2022) Bio-based plastics production, impact and end of life: a literature review and content analysis. Sustainability (Switzerland) 14:4855. https://doi.org/10.3390/SU14084855/S1

    Article  CAS  Google Scholar 

  5. Lim JY, Hii SL, Chee SY, Wong CL (2018) Sargassum siliquosum J. Agardh extract as potential material for synthesis of bioplastic film. J Appl Phycol 30:3285–3297. https://doi.org/10.1007/s10811-018-1603-2

    Article  CAS  Google Scholar 

  6. Assad I, Bhat SU, Gani A, Shah A (2020) Protein based packaging of plant origin: fabrication, properties, recent advances and future perspectives. Int J Biol Macromol 164:707–716. https://doi.org/10.1016/J.IJBIOMAC.2020.07.140

    Article  CAS  PubMed  Google Scholar 

  7. Filho WL, Havea PH, Balogun AL et al (2019) Plastic debris on Pacific Islands: ecological and health implications. Sci Total Environ 670:181–187. https://doi.org/10.1016/J.SCITOTENV.2019.03.181

    Article  CAS  PubMed  Google Scholar 

  8. Lim BKH, Thian ES (2022) Biodegradation of polymers in managing plastic waste—a review. Sci Total Environ 813:151880. https://doi.org/10.1016/J.SCITOTENV.2021.151880

    Article  CAS  PubMed  Google Scholar 

  9. Caniato M, Cozzarini L, Schmid C, Gasparella A (2021) Acoustic and thermal characterization of a novel sustainable material incorporating recycled microplastic waste. Sustain Mater Technol 28:e00274. https://doi.org/10.1016/J.SUSMAT.2021.E00274

    Article  CAS  Google Scholar 

  10. Zhang C, Show PL, Ho SH (2019) Progress and perspective on algal plastics—a critical review. Bioresour Technol 289:121700

    Article  CAS  PubMed  Google Scholar 

  11. Rosenboom JG, Langer R, Traverso G (2022) Bioplastics for a circular economy. Nat Rev Mater 7:117–137. https://doi.org/10.1038/s41578-021-00407-8

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dilkes-Hoffman L, Ashworth P, Laycock B et al (2019) Public attitudes towards bioplastics—knowledge, perception and end-of-life management. Resour Conserv Recycl 151:104479. https://doi.org/10.1016/j.resconrec.2019.104479

    Article  Google Scholar 

  13. Wu F, Misra M, Mohanty AK (2021) Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 117:101395

    Article  CAS  Google Scholar 

  14. RameshKumar S, Shaiju P, O’Connor KE (2020) Bio-based and biodegradable polymers—state-of-the-art, challenges and emerging trends. Curr Opin Green Sustain Chem 21:75–81. https://doi.org/10.1016/J.COGSC.2019.12.005

    Article  CAS  Google Scholar 

  15. Priyadarshi R, Roy S, Ghosh T et al (2021) Antimicrobial nanofillers reinforced biopolymer composite films for active food packaging applications—a review. Sustain Mater Technol. https://doi.org/10.1016/J.SUSMAT.2021.E00353

    Article  Google Scholar 

  16. Mal N, Satpati GG, Raghunathan S, Davoodbasha MA (2022) Current strategies on algae-based biopolymer production and scale-up. Chemosphere 289:133178. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133178

    Article  CAS  PubMed  Google Scholar 

  17. Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214:159–174. https://doi.org/10.1002/macp.201200439

    Article  CAS  Google Scholar 

  18. Ashter SA (2016) Introduction to bioplastics engineering. Elsevier, Amsterdam

    Google Scholar 

  19. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. https://doi.org/10.1186/2194-0517-2-8

    Article  PubMed Central  PubMed  Google Scholar 

  20. Brodin M, Vallejos M, Opedal MT et al (2017) Lignocellulosics as sustainable resources for production of bioplastics—a review. J Clean Prod 162:646–664

    Article  CAS  Google Scholar 

  21. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manage 59:526–536. https://doi.org/10.1016/J.WASMAN.2016.10.006

    Article  CAS  Google Scholar 

  22. Gibbens S (2018) Bioplastics—are they truly better for the environment? https://www.nationalgeographic.com/environment/article/are-bioplastics-made-from-plants-better-for-environment-ocean-plastic. Accessed 12 Aug 2021

  23. Gironi F, Piemonte V (2011) Bioplastics and petroleum-based plastics: strengths and weaknesses. Energy Sources Part A 33:1949–1959. https://doi.org/10.1080/15567030903436830

    Article  CAS  Google Scholar 

  24. Onen Cinar S, Chong ZK, Kucuker MA et al (2020) Bioplastic production from microalgae: a review. Int J Environ Res Public Health 17:3842. https://doi.org/10.3390/ijerph17113842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kiuru P, Valeria D’Auria M, Muller CD et al (2014) Exploring marine resources for bioactive compounds. Planta Med 80:1234–1246

    Article  CAS  PubMed  Google Scholar 

  26. Yu KX, Jantan I, Ahmad R, Wong CL (2014) The major bioactive components of seaweeds and their mosquitocidal potential. Parasitol Res 113:3121–3141

    Article  PubMed  Google Scholar 

  27. Ahmad S, Iqbal K, Kothari R et al (2022) A critical overview of upstream cultivation and downstream processing of algae-based biofuels: Opportunity, technological barriers and future perspective. J Biotechnol. https://doi.org/10.1016/J.JBIOTEC.2022.03.015

    Article  PubMed  Google Scholar 

  28. Noreen A, Zia KM, Zuber M et al (2016) A critical review of algal biomass: a versatile platform of bio-based polyesters from renewable resources. Int J Biol Macromol 86:937–949

    Article  CAS  PubMed  Google Scholar 

  29. Rajpoot AS, Choudhary T, Chelladurai H et al (2022) A comprehensive review on bioplastic production from microalgae. Mater Today Proc 56:171–178. https://doi.org/10.1016/J.MATPR.2022.01.060

    Article  CAS  Google Scholar 

  30. Dang BT, Bui XT, Tran DPH et al (2022) Current application of algae derivatives for bioplastic production: a review. Bioresour Technol 347:126698. https://doi.org/10.1016/J.BIORTECH.2022.126698

    Article  CAS  PubMed  Google Scholar 

  31. Özçimen D, İnan B, Morkoç O, Efe A (2017) A review on algal biopolymers. J Chem Eng Res Updates 4:7–14. https://doi.org/10.15377/2409-983x.2017.04.2

    Article  Google Scholar 

  32. Venugopal V (2019) Sulfated and non-sulfated polysaccharides from seaweeds and their uses: an overview. pdfs.semanticscholar.org

  33. Gade R, Tulasi M, Bhai V (2013) Seaweeds: a novel biomaterial. Int J Pharm Pharm Sci 5:975

    Google Scholar 

  34. Mohamed SAA, El-Sakhawy M, El-Sakhawy MAM (2020) Polysaccharides, protein and lipid -based natural edible films in food packaging: a review. Carbohydr Polym 238:116178. https://doi.org/10.1016/J.CARBPOL.2020.116178

    Article  CAS  PubMed  Google Scholar 

  35. Gomez-Zavaglia A, Prieto Lage MA, Jimenez-Lopez C et al (2019) The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants 8:406. https://doi.org/10.3390/antiox8090406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Jerez A, Partal P, Martínez I et al (2007) Protein-based bioplastics: effect of thermo-mechanical processing. Rheol Acta. https://doi.org/10.1007/s00397-007-0165-z

    Article  Google Scholar 

  37. He Q, Huang Y, Lin B, Wang S (2017) A nanocomposite film fabricated with simultaneously extracted protein-polysaccharide from a marine alga and TiO2 nanoparticles. J Appl Phycol 29:1541–1552. https://doi.org/10.1007/s10811-016-1030-1

    Article  CAS  Google Scholar 

  38. Ashok A, Rejeesh CR, Renjith R (2016) Biodegradable polymers for sustainable packaging applications: a review. IJBB 1:11

    Google Scholar 

  39. Aswathi Mohan A, Robert Antony A, Greeshma K et al (2022) Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. Bioresour Technol 344:126397. https://doi.org/10.1016/J.BIORTECH.2021.126397

    Article  CAS  PubMed  Google Scholar 

  40. Pacheco D, Cotas J, Marques JC et al (2022) Seaweed-based polymers from sustainable aquaculture to “greener” plastic products. Sustain Glob Resour Seaweeds 1:591–602. https://doi.org/10.1007/978-3-030-91955-9_31

    Article  Google Scholar 

  41. Albertos I, Martin-Diana A, Burón M, Rico D (2019) Development of functional bio-based seaweed (Himanthalia elongata and Palmaria palmata) edible films for extending the shelflife of fresh fish burgers. Food Packag Shelf Life 22:100382

    Article  Google Scholar 

  42. Jang SA, Shin YJ, Seo YB, Song KB (2011) Effects of various plasticizers and nanoclays on the mechanical properties of red algae film. J Food Sci 76:N30–N34. https://doi.org/10.1111/j.1750-3841.2011.02089.x

    Article  CAS  PubMed  Google Scholar 

  43. Lim C, Yusoff S, Ng CG et al (2021) Bioplastic made from seaweed polysaccharides with green production methods. J Environ Chem Eng 9:105895. https://doi.org/10.1016/J.JECE.2021.105895

    Article  CAS  Google Scholar 

  44. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58(4):187–205

    Article  CAS  Google Scholar 

  45. Bagal-Kestwal DR, Pan MH, Chiang B-H (2019) Properties and applications of gelatin, pectin, and carrageenan gels. Bio monomers for green polymeric composite materials. Wiley, Chichester, pp 117–140

    Chapter  Google Scholar 

  46. Harding S, Tombs M, Adams G, Paulsen B (2017) An introduction to polysaccharide biotechnology. CRC Press, Boca Raton

    Book  Google Scholar 

  47. Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13:3340–3359

    Article  PubMed Central  PubMed  Google Scholar 

  48. Khalil HPSA, Wy Yap S et al (2019) Techno-functional properties of edible packaging films at different polysaccharide blends. J Phys Sci 30:23–41. https://doi.org/10.21315/jps2019.30.s1.2

    Article  CAS  Google Scholar 

  49. Larotonda FDS, Torres MD, Gonçalves MP et al (2016) Hybrid carrageenan-based formulations for edible film preparation: benchmarking with kappa carrageenan. J Appl Polym Sci. https://doi.org/10.1002/app.42263

    Article  Google Scholar 

  50. Paula G, Benevides N, Cunha A et al (2015) Development and characterization of edible films from mixtures of κ-carrageenan, ι-carrageenan, and alginate. Elsevier, Amsterdam

    Book  Google Scholar 

  51. Ganesan AR, Munisamy S, Bhat R (2018) Effect of potassium hydroxide on rheological and thermo-mechanical properties of semi-refined carrageenan (SRC) films. Food Biosci 26:104–112. https://doi.org/10.1016/j.fbio.2018.10.003

    Article  CAS  Google Scholar 

  52. Ramu Ganesan A, Shanmugam M, Bhat R (2018) Producing novel edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications. Int J Biol Macromol 112:1164–1170. https://doi.org/10.1016/j.ijbiomac.2018.02.089

    Article  CAS  PubMed  Google Scholar 

  53. Samsir N, Rashid AA, Azahari B (2019) The influence of surface structure of low industrial grade seaweed and semi-refined carrageenan on mechanical and physical properties of natural rubber latex composites. J Vinyl Add Technol 25:278–286. https://doi.org/10.1002/vnl.21691

    Article  CAS  Google Scholar 

  54. Sanchez-Garcia MD, Hilliou L, Lagaron JM (2010) Nanobiocomposites of Carrageenan, Zein, and Mica of interest in food packaging and coating applications. J Agric Food Chem 58:6884–6894. https://doi.org/10.1021/jf1007659

    Article  CAS  PubMed  Google Scholar 

  55. Sedayu BB, Cran MJ, Bigger SW (2020) Reinforcement of refined and semi-refined carrageenan film with nanocellulose. Polymers (Basel). https://doi.org/10.3390/POLYM12051145

    Article  PubMed  Google Scholar 

  56. Tarman K, Sadi U, Santoso J, Hardjito L (2020) Carrageenan and its enzymatic extraction. Encycl Marine Biotechnol. https://doi.org/10.1002/9781119143802.CH7

    Article  Google Scholar 

  57. Alemán A, Blanco-Pascual N, Montero MP, Gómez-Guillén MC (2016) Simple and efficient hydrolysis procedure for full utilization of the seaweed Mastocarpus stellatus to produce antioxidant films. Food Hydrocoll 56:277–284. https://doi.org/10.1016/j.foodhyd.2015.12.024

    Article  CAS  Google Scholar 

  58. Blanco-Pascual N, Alemán A, Gómez-Guillén MC, Montero MP (2014) Enzyme-assisted extraction of κ/ι-hybrid carrageenan from Mastocarpus stellatus for obtaining bioactive ingredients and their application for edible active film development. Food Funct 5:319–329. https://doi.org/10.1039/c3fo60310e

    Article  CAS  PubMed  Google Scholar 

  59. Lee WK, Lim YY, Leow ATC et al (2017) Biosynthesis of agar in red seaweeds: a review. Carbohydr Polym 164:23–30

    Article  CAS  PubMed  Google Scholar 

  60. Alba K, Kontogiorgos V (2018) Seaweed polysaccharides (Agar, Alginate Carrageenan). https://doi.org/10.1016/B978-0-08-100596-5.21587-4

  61. Martínez-Sanz M, Gómez-Mascaraque LG, Ballester AR et al (2019) Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Res 38:101420. https://doi.org/10.1016/j.algal.2019.101420

    Article  Google Scholar 

  62. Madera-Santana TJ, Robledo D, Freile-Pelegrín Y (2011) Physicochemical properties of biodegradable polyvinyl alcohol-agar films from the red algae Hydropuntia cornea. Mar Biotechnol 13:793–800. https://doi.org/10.1007/s10126-010-9341-8

    Article  CAS  Google Scholar 

  63. Sousa AMM, Sereno AM, Hilliou L, Gonçalves MP (2010) Biodegradable agar extracted from Gracilaria vermiculophylla: film properties and application to edible coating. Mater Sci Forum 636:739–744

    Article  Google Scholar 

  64. Sousa AMM, Gonçalves MP (2015) Strategies to improve the mechanical strength and water resistance of agar films for food packaging applications. Carbohydr Polym 132:196–204. https://doi.org/10.1016/j.carbpol.2015.06.022

    Article  CAS  PubMed  Google Scholar 

  65. Villanueva RD, Sousa AMM, Gonçalves MP et al (2010) Production and properties of agar from the invasive marine alga, Gracilaria vermiculophylla (Gracilariales, Rhodophyta). J Appl Phycol 22:211–220. https://doi.org/10.1007/s10811-009-9444-7

    Article  CAS  Google Scholar 

  66. Pandya YH, Bakshi M, Sharma A, Pandya H (2022) Agar-agar extraction, structural properties and applications: a review. Pharma Innov J 11:1151–1157

    Google Scholar 

  67. Sudhakar K, Mamat R, Samykano M et al (2018) An overview of marine macroalgae as bioresource. Renew Sustain Energy Rev 91:165–179

    Article  Google Scholar 

  68. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507. https://doi.org/10.1007/s10811-008-9392-7

    Article  CAS  Google Scholar 

  69. Tsarpali M, Arora N, Kuhn JN, Philippidis GP (2021) Lipid-extracted algae as a source of biomaterials for algae biorefineries. Algal Res 57:102354

    Article  Google Scholar 

  70. Cian RE, Salgado PR, Drago SR et al (2014) Development of naturally activated edible films with antioxidant properties prepared from red seaweed Porphyra columbina biopolymers. Food Chem 146:6–14. https://doi.org/10.1016/j.foodchem.2013.08.133

    Article  CAS  PubMed  Google Scholar 

  71. Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6:33. https://doi.org/10.3390/foods6050033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Wang K, Mandal A, Ayton E et al (2016) Modification of protein rich algal-biomass to form bioplastics and odor removal. In: Dhillon GS (ed) Protein byproducts: transformation from environmental burden into value-added products. Elsevier, Amsterdam, pp 107–117

    Chapter  Google Scholar 

  73. Benelhadj S, Fejji N, Degraeve P et al (2016) Properties of lysozyme/Arthrospira platensis (Spirulina) protein complexes for antimicrobial edible food packaging. Algal Res 15:43–49. https://doi.org/10.1016/j.algal.2016.02.003

    Article  Google Scholar 

  74. Yang HJ, Lee JH, Lee KY, Song K (2017) Antimicrobial effect of an Undaria pinnatifida composite film containing vanillin against Escherichia coli and its application in the packaging of smoked chicken breast. Int J Food Sci Technol 52:398–403. https://doi.org/10.1111/ijfs.13294

    Article  CAS  Google Scholar 

  75. Rioux L-E, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69:530–537. https://doi.org/10.1016/j.carbpol.2007.01.009

    Article  CAS  Google Scholar 

  76. Saji S, Hebden A, Goswami P, Du C (2022) A brief review on the development of alginate extraction process and its sustainability. Sustainability 14:5181. https://doi.org/10.3390/SU14095181

    Article  CAS  Google Scholar 

  77. Blanco-Pascual N, Montero M (2014) Antioxidant film development from unrefined extracts of brown seaweeds Laminaria digitata and Ascophyllum nodosum. Elsevier, Amsterdam

    Book  Google Scholar 

  78. Hanyuda T, Yamamura K, Boo GH et al (2020) Identification of true Gloiopeltis furcata (Gigartinales, Rhodophyta) and preliminary analysis of its biogeography. Phycol Res 68:161–168. https://doi.org/10.1111/pre.12411

    Article  Google Scholar 

  79. Watanabe K, Kishimoto T, Kumagai Y et al (2019) Complete sequence of mitochondrial DNA of Gloiopeltis furcata (Postels and Ruprecht). J Agardh Mitochondrial DNA B Resour 4:2543–2544. https://doi.org/10.1080/23802359.2019.1639558

    Article  PubMed  Google Scholar 

  80. Zheng J, Chen Y, Yao F et al (2012) Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of gloiopeltis tenax. Mar Drugs 10:2634–2647. https://doi.org/10.3390/md10122634

    Article  PubMed Central  PubMed  Google Scholar 

  81. Tuvikene R, Robal M, Fujita D et al (2015) Funorans from Gloiopeltis species. Part I. Extraction and structural characteristics. Food Hydrocoll 43:481–492. https://doi.org/10.1016/j.foodhyd.2014.07.010

    Article  CAS  Google Scholar 

  82. Tuvikene R, Robal M, Mändar H et al (2015) Funorans from Gloiopeltis species. Part II. Rheology and thermal properties. Food Hydrocoll 43:649–657. https://doi.org/10.1016/J.FOODHYD.2014.07.031

    Article  CAS  Google Scholar 

  83. Hu Y, Zhao X, Yu G et al (2012) Structural characterization of natural ideal 6-O-sulfated agarose from red alga Gloiopeltis furcata. Carbohydr Polym 89:883–889. https://doi.org/10.1016/j.carbpol.2012.04.026

    Article  CAS  PubMed  Google Scholar 

  84. Yu G, Hu Y, Yang B et al (2010) Extraction, isolation and structural characterization of polysaccharides from a red alga Gloiopeltis furcata. J Ocean Univ China 9:193–197. https://doi.org/10.1007/s11802-010-0193-7

    Article  CAS  Google Scholar 

  85. Ju A, Song K (2020) Incorporation of yellow onion peel extract into the funoran-based biodegradable films as an antioxidant packaging material. Int J Food Sci Technol 55:1671–1678. https://doi.org/10.1111/ijfs.14436

    Article  CAS  Google Scholar 

  86. Wahlström N, Edlund U, Pavia H et al (2020) Cellulose from the green macroalgae Ulva lactuca: isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose 27:3707–3725. https://doi.org/10.1007/s10570-020-03029-5

    Article  CAS  Google Scholar 

  87. Samiee S, Ahmadzadeh H, Hosseini M, Lyon S (2019) Algae as a source of microcrystalline cellulose. In: Hosseini M (ed) Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts: technologies and approaches for scale-up and commercialization. Elsevier, Amsterdam, pp 331–350

    Chapter  Google Scholar 

  88. Khalil H, Tye Y, Saurabh C, et al (2017) Biodegradable polymer films from seaweed polysaccharides: a review on cellulose as a reinforcement material. researchgate.net. https://doi.org/10.3144/expresspolymlett.2017.26

  89. Ummartyotin S, Energy HM-R (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Elsevier, Amsterdam

    Google Scholar 

  90. Ng H, Sin L, Tee T et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Elsevier, Amsterdam

    Book  Google Scholar 

  91. Zanchetta E, Damergi E, Patel B et al (2021) Algal cellulose, production and potential use in plastics: challenges and opportunities. Algal Res 56:102288. https://doi.org/10.1016/J.ALGAL.2021.102288

    Article  Google Scholar 

  92. Sim KJ, Han SO, Seo YB (2010) Dynamic mechanical and thermal properties of red algae fiber reinforced poly(lactic acid) biocomposites. Macromol Res 18:489–495. https://doi.org/10.1007/s13233-010-0503-3

    Article  CAS  Google Scholar 

  93. Doh H, Dunno KD, Whiteside WS (2020) Preparation of novel seaweed nanocomposite film from brown seaweeds Laminaria japonica and Sargassum natans. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2020.105744

    Article  Google Scholar 

  94. Lutfia FN, Isnansetyo A, Susidarti RA, Nursid M (2020) Chemical composition diversity of fucoidans isolated from three tropical brown seaweeds (Phaeophyceae) species. Biodiversitas 21:3170–3177. https://doi.org/10.13057/BIODIV/D210739

    Article  Google Scholar 

  95. Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Hifney AF, Fawzy MA, Abdel-Gawad KM, Gomaa M (2016) Industrial optimization of fucoidan extraction from Sargassum sp. and its potential antioxidant and emulsifying activities. Food Hydrocoll 54:77–88. https://doi.org/10.1016/j.foodhyd.2015.09.022

    Article  CAS  Google Scholar 

  97. Gomaa M, Fawzy MA, Hifney AF, Abdel-Gawad KM (2018) Use of the brown seaweed Sargassum latifolium in the design of alginate-fucoidan based films with natural antioxidant properties and kinetic modeling of moisture sorption and polyphenolic release. Food Hydrocoll 82:64–72. https://doi.org/10.1016/j.foodhyd.2018.03.053

    Article  CAS  Google Scholar 

  98. Gomaa M, Hifney AF, Fawzy MA, Abdel-Gawad KM (2018) Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: study of moisture sorption, polyphenol release and antioxidant properties. Food Hydrocoll 82:239–247. https://doi.org/10.1016/j.foodhyd.2018.03.056

    Article  CAS  Google Scholar 

  99. Ale MT, Meyer AS (2013) Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv 3:8131–8141

    Article  CAS  Google Scholar 

  100. Kidgell JT, Magnusson M, de Nys R, Glasson CRK (2019) Ulvan: a systematic review of extraction, composition and function. Algal Res 39:101422

    Article  Google Scholar 

  101. Lahaye M, Robic A (2007) Structure and function properties of Ulvan, a polysaccharide from green seaweeds. Biomacromol 8:1765–1774

    Article  CAS  Google Scholar 

  102. Guidara M, Yaich H, Richel A et al (2019) Effects of extraction procedures and plasticizer concentration on the optical, thermal, structural and antioxidant properties of novel ulvan films. Int J Biol Macromol 135:647–658. https://doi.org/10.1016/j.ijbiomac.2019.05.196

    Article  CAS  PubMed  Google Scholar 

  103. Kuntzler SG, de Almeida ACA, Costa JAV, de Morais MG (2018) Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: a novel nanomaterial with antibacterial activity. Int J Biol Macromol 113:1008–1014. https://doi.org/10.1016/j.ijbiomac.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  104. Ansari S, Fatma T (2016) Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization and characterization. PLoS ONE 11:e0158168. https://doi.org/10.1371/journal.pone.0158168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Haddadi M, Asadolahi R, Negahdari B (2019) The bioextraction of bioplastics with focus on polyhydroxybutyrate: a review. Int J Environ Sci Technol 16:3935

    Article  CAS  Google Scholar 

  106. Kunasundari B, Letters KS-EP (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett. https://doi.org/10.3144/expresspolymlett.2011.60

    Article  Google Scholar 

  107. Han JH (2013) Edible films and coatings: a review. In: Han JH (ed) Innovations in food packaging, 2nd edn. Elsevier, Amsterdam, pp 213–255

    Google Scholar 

  108. Tan SX, Andriyana A, Ong HC et al (2022) A comprehensive review on the emerging roles of nanofillers and plasticizers towards sustainable starch-based bioplastic fabrication. Polymers 14:664. https://doi.org/10.3390/POLYM14040664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Jamarani R, Erythropel HC, Nicell JA et al (2018) How green is your plasticizer? Polymers (Basel) 10:834

    Article  PubMed  Google Scholar 

  110. Alvian Gabriel A, Fitri Solikhah A, Rahmawati Y et al (2022) A Review on the difference of physical and mechanical properties of bioplastic from seaweed hydrocolloids with various plasticizers. IOP Conf Ser Earth Environ Sci 967:012012. https://doi.org/10.1088/1755-1315/967/1/012012

    Article  Google Scholar 

  111. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263

    Article  CAS  Google Scholar 

  112. Felton LA (2013) Mechanisms of polymeric film formation. Int J Pharm 457:423–427. https://doi.org/10.1016/J.IJPHARM.2012.12.027

    Article  CAS  PubMed  Google Scholar 

  113. Hernandez-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73:R30–R39. https://doi.org/10.1111/J.1750-3841.2007.00636.X

    Article  CAS  PubMed  Google Scholar 

  114. Khalil A, Tye YY, Tahir PM (2018) Effects of corn starch and Kappaphycus alvarezii seaweed blend concentration on the optical, mechanical, and water vapor barrier properties of composite films. BioResources. https://doi.org/10.15376/biores.13.1.1157-1173

    Article  Google Scholar 

  115. Cian RE, Salgado PR, Drago SR, Mauri AN (2015) Effect of glycerol and Ca2+ addition on physicochemical properties of edible carrageenan/porphyran-based films obtained from the red alga, Pyropia columbina. J Appl Phycol 27:1699–1708. https://doi.org/10.1007/s10811-014-0449-5

    Article  CAS  Google Scholar 

  116. Duan Q, Jiang T, Xue C et al (2020) Preparation and characterization of starch/enteromorpha/nano-clay hybrid composites. Int J Biol Macromol 150:16–22. https://doi.org/10.1016/j.ijbiomac.2020.01.283

    Article  CAS  PubMed  Google Scholar 

  117. Garrido T, Etxabide A, Guerrero P, de La Caba K (2016) Characterization of agar/soy protein biocomposite films: effect of agar on the extruded pellets and compression moulded films. Carbohydr Polym 151:408–416. https://doi.org/10.1016/j.carbpol.2016.05.089

    Article  CAS  PubMed  Google Scholar 

  118. Hasan M, Lai TK, Gopakumar DA et al (2019) Micro crystalline bamboo cellulose based seaweed biodegradable composite films for sustainable packaging material. J Polym Environ 27:1602–1612. https://doi.org/10.1007/s10924-019-01457-4

    Article  CAS  Google Scholar 

  119. Kazharska M, Ding Y, Arif M et al (2019) Cellulose nanocrystals derived from Enteromorpha prolifera and their use in developing bionanocomposite films with water-soluble polysaccharides extracted from E. prolifera. Int J Biol Macromol 134:390–396. https://doi.org/10.1016/j.ijbiomac.2019.05.058

    Article  CAS  PubMed  Google Scholar 

  120. Merino D, Alvarez VA (2020) Green microcomposites from renewable resources: effect of seaweed (Undaria pinnatifida) as filler on corn starch-chitosan film properties. J Polym Environ 28:500–516. https://doi.org/10.1007/s10924-019-01622-9

    Article  CAS  Google Scholar 

  121. Sedayu BB, Cran MJ, Bigger SW (2018) Characterization of semi-refined carrageenan-based film for primary food packaging purposes. J Polym Environ 26:3754–3761. https://doi.org/10.1007/s10924-018-1255-y

    Article  CAS  Google Scholar 

  122. Tran TTB, Roach P, Nguyen MH et al (2020) Development of biodegradable films based on seaweed polysaccharides and Gac pulp (Momordica cochinchinensis), the waste generated from Gac oil production. Food Hydrocoll 99:105322. https://doi.org/10.1016/j.foodhyd.2019.105322

    Article  CAS  Google Scholar 

  123. Aiman MA, Ramlee NA, Mohamad Azmi MA, Tuan Sabri TNA (2022) Preparation, thermal degradation, and rheology studies for polylactic acid (PLA) and palm stearin (PS) blend: a review. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2022.02.420

    Article  Google Scholar 

  124. Bejenari I, Dinu R, Montes S et al (2021) Hydrothermal carbon as reactive fillers to produce sustainable biocomposites with aromatic bio-based epoxy resins. Polymers 13:240. https://doi.org/10.3390/POLYM13020240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Yadav S, Mehrotra GK, Dutta PK (2021) Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem 334:127605. https://doi.org/10.1016/J.FOODCHEM.2020.127605

    Article  CAS  PubMed  Google Scholar 

  126. Oluwasina OO, Olaleye FK, Olusegun SJ et al (2019) Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. Int J Biol Macromol 135:282–293. https://doi.org/10.1016/j.ijbiomac.2019.05.150

    Article  CAS  PubMed  Google Scholar 

  127. Bourtoom T (2008) Review Article Edible films and coatings: characteristics and properties. Elsevier, Amsterdam

    Google Scholar 

  128. Sadeghizadeh-Yazdi J, Habibi M, Kamali AA, Banaei M (2019) Application of edible and biodegradable starch-based films in food packaging: a systematic review and meta-analysis article history. Curr Res Nutr Food Sci J 7:624–637. https://doi.org/10.12944/CRNFSJ.7.3.03

    Article  Google Scholar 

  129. Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43:3058–3071. https://doi.org/10.1007/S10853-007-2434-8

    Article  CAS  Google Scholar 

  130. Kumar Dhaka R, Upadhyay A, Rohant Kumar Dhaka C (2018) Edible films and coatings: a brief overview. Pharma Innov J 7:331–333. https://doi.org/10.1016/j.tifs.2015.07.011

    Article  CAS  Google Scholar 

  131. Uthaya Kumar US, Paridah MT, Owolabi FAT et al (2019) Neem leaves extract based seaweed bio-degradable composite films with excellent antimicrobial activity for sustainable packaging material. BioResources 14:700–713

    Article  Google Scholar 

  132. Sapper M, Chiralt A (2018) Starch-based coatings for preservation of fruits and vegetables. Coatings 8:152. https://doi.org/10.3390/coatings8050152

    Article  CAS  Google Scholar 

  133. Dehghani S, Hosseini SV, Regenstein JM (2018) Edible films and coatings in seafood preservation: a review. Food Chem 240:505–513

    Article  CAS  PubMed  Google Scholar 

  134. Kumar N, Neeraj (2019) Polysaccharide-based component and their relevance in edible film/coating: a review. Nutr Food Sci 49:793–823

    Article  Google Scholar 

  135. Augusto A, Dias J, Campos M et al (2018) Influence of codium tomentosum extract in the properties of alginate and chitosan edible films. Foods 7:53. https://doi.org/10.3390/foods7040053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Bajić M, Ročnik T, Oberlintner A et al (2019) Natural plant extracts as active components in chitosan-based films: a comparative study. Food Packag Shelf Life 21:100365. https://doi.org/10.1016/j.fpsl.2019.100365

    Article  Google Scholar 

  137. Abdul Khalil HPS, Che Mohamad HCI, Khairunnisa AR et al (2018) Development and characterization of bamboo fiber reinforced biopolymer films. Mater Res Express 5:085309. https://doi.org/10.1088/2053-1591/aad2a0

    Article  CAS  Google Scholar 

  138. Kim S, Baek SK, Song K (2018) Physical and antioxidant properties of alginate films prepared from Sargassum fulvellum with black chokeberry extract. Food Packag Shelf Life 18:157–163. https://doi.org/10.1016/j.fpsl.2018.11.008

    Article  Google Scholar 

  139. Jang SA, Lim GO, Song K (2010) Use of nano-clay (Cloisite Na+) improves tensile strength and vapour permeability in agar rich red algae (Gelidium corneum)-gelatin composite films. Int J Food Sci Technol 45:1883–1888. https://doi.org/10.1111/j.1365-2621.2010.02363.x

    Article  CAS  Google Scholar 

  140. Souza AC, Benze R, Ferrão ES et al (2012) Cassava starch biodegradable films: influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT Food Sci Technol 46:110–117. https://doi.org/10.1016/j.lwt.2011.10.018

    Article  CAS  Google Scholar 

  141. Zullo R, Iannace S (2009) The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: correlation among process, elongational properties and macromolecular structure. Carbohydr Polym 77:376–383. https://doi.org/10.1016/j.carbpol.2009.01.007

    Article  CAS  Google Scholar 

  142. Emamhadi MA, Sarafraz M, Akbari M et al (2020) Nanomaterials for food packaging applications: a systematic review. Food Chem Toxicol 146:111825. https://doi.org/10.1016/J.FCT.2020.111825

    Article  CAS  PubMed  Google Scholar 

  143. Peelman N, Ragaert P, de Meulenaer B et al (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141. https://doi.org/10.1016/J.TIFS.2013.06.003

    Article  CAS  Google Scholar 

  144. Groh KJ, Backhaus T, Carney-Almroth B et al (2019) Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ 651:3253–3268

    Article  CAS  PubMed  Google Scholar 

  145. Asgher M, Qamar SA, Bilal M, Iqbal HMN (2020) Bio-based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 137:109625

    Article  CAS  PubMed  Google Scholar 

  146. Carissimi M, Flôres SH, Rech R (2018) Effect of microalgae addition on active biodegradable starch film. Algal Res 32:201–209. https://doi.org/10.1016/j.algal.2018.04.001

    Article  Google Scholar 

  147. Ili Balqis AM, Nor Khaizura MAR, Russly AR, Nur Hanani ZA (2017) Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii. Int J Biol Macromol 103:721–732. https://doi.org/10.1016/j.ijbiomac.2017.05.105

    Article  CAS  PubMed  Google Scholar 

  148. Rujnić-Sokele M, Pilipović A (2017) Challenges and opportunities of biodegradable plastics: a mini review. Waste Manage Res 35:132–140

    Article  Google Scholar 

  149. Zhong Y, Godwin P, Jin Y, Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv Ind Eng Polym Res 3:27–35. https://doi.org/10.1016/j.aiepr.2019.11.002

    Article  Google Scholar 

  150. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  151. Kale G, Kijchavengkul T, Auras R et al (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277. https://doi.org/10.1002/MABI.200600168

    Article  CAS  PubMed  Google Scholar 

  152. Chong EWN, Jafarzadeh S et al (2019) Enhancement in the physico-mechanical functions of seaweed biopolymer film via embedding fillers for plasticulture application—a comparison with conventional biodegradable mulch film. Polymers (Basel) 11:210. https://doi.org/10.3390/polym11020210

    Article  CAS  PubMed  Google Scholar 

  153. Devadas VV, Khoo KS, Chia WY et al (2021) Algae biopolymer towards sustainable circular economy. Bioresour Technol 325:124702. https://doi.org/10.1016/J.BIORTECH.2021.124702

    Article  CAS  PubMed  Google Scholar 

  154. Ubando AT, Felix CB, Chen WH (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol 299:122585. https://doi.org/10.1016/J.BIORTECH.2019.122585

    Article  CAS  PubMed  Google Scholar 

  155. Vecchi V, Barera S, Bassi R, Dallosto L (2020) Potential and challenges of improving photosynthesis in algae. Plants 9:67. https://doi.org/10.3390/PLANTS9010067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Ullmann J, Grimm D (2021) Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Organ Agric 11:261–267. https://doi.org/10.1007/S13165-020-00337-9

    Article  Google Scholar 

  157. Koyande AK, Chew KW, Rambabu K et al (2019) Microalgae: a potential alternative to health supplementation for humans. Food Sci Hum Wellness 8:16–24. https://doi.org/10.1016/J.FSHW.2019.03.001

    Article  Google Scholar 

  158. Fabris M, Abbriano RM, Pernice M et al (2020) Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front Plant Sci. https://doi.org/10.3389/FPLS.2020.00279

    Article  PubMed Central  PubMed  Google Scholar 

  159. Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial scale. Eur J Phycol 52(4):407–418. https://doi.org/10.1080/09670262.2017.1365177

    Article  CAS  Google Scholar 

  160. Chew KW, Yap JY, Show PL et al (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62. https://doi.org/10.1016/J.BIORTECH.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  161. Tan CH, Show PL, Chang JS et al (2015) Novel approaches of producing bioenergies from microalgae: a recent review. Biotechnol Adv 33:1219–1227. https://doi.org/10.1016/J.BIOTECHADV.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  162. Leong YK, Show PL, Ooi CW et al (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 180:52–65. https://doi.org/10.1016/J.JBIOTEC.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  163. Chia SR, Ong HC, Chew KW et al (2018) Sustainable approaches for algae utilisation in bioenergy production. Renew Energy 129:838–852. https://doi.org/10.1016/J.RENENE.2017.04.001

    Article  CAS  Google Scholar 

  164. Chen TL, Kim H, Pan SY et al (2020) Implementation of green chemistry principles in circular economy system towards sustainable development goals: challenges and perspectives. Sci Total Environ 716:136998. https://doi.org/10.1016/J.SCITOTENV.2020.136998

    Article  CAS  PubMed  Google Scholar 

  165. Kothari R, Ahmad S, Pathak V et al (2019) Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach. Biomass Convers Biorefinery 11:1419–1442. https://doi.org/10.1007/S13399-019-00533-Y

    Article  Google Scholar 

  166. Alami AH, Alasad S, Ali M, Alshamsi M (2021) Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Sci Total Environ 759:143529. https://doi.org/10.1016/J.SCITOTENV.2020.143529

    Article  CAS  PubMed  Google Scholar 

  167. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factor 17:1–21. https://doi.org/10.1186/S12934-018-0879-X

    Article  Google Scholar 

  168. Venkata Mohan S, Hemalatha M, Chakraborty D et al (2020) Algal biorefinery models with self-sustainable closed loop approach: trends and prospective for blue-bioeconomy. Bioresour Technol 295:122128. https://doi.org/10.1016/J.BIORTECH.2019.122128

    Article  CAS  PubMed  Google Scholar 

  169. Beckstrom BD, Wilson MH, Crocker M, Quinn JC (2020) Bioplastic feedstock production from microalgae with fuel co-products: a techno-economic and life cycle impact assessment. Algal Res 46:101769. https://doi.org/10.1016/J.ALGAL.2019.101769

    Article  Google Scholar 

  170. Tetu SG, Sarker I, Schrameyer V et al (2019) Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun Biol 2:1–9

    Article  Google Scholar 

  171. Lamberti FM, Román-Ramírez LA, Wood J (2020) Recycling of bioplastics: routes and benefits. J Polym Environ 28:2551–2571. https://doi.org/10.1007/S10924-020-01795-8

    Article  CAS  Google Scholar 

  172. Wojnowska-Baryła I, Kulikowska D, Bernat K (2020) Effect of bio-based products on waste management. Sustainability 12:2088. https://doi.org/10.3390/SU12052088

    Article  Google Scholar 

  173. Ali SS, Elsamahy T, Al-Tohamy R et al (2021) Plastic wastes biodegradation: mechanisms, challenges and future prospects. Sci Total Environ 780:146590. https://doi.org/10.1016/J.SCITOTENV.2021.146590

    Article  CAS  PubMed  Google Scholar 

  174. Liwarska-Bizukojc E (2021) Effect of (bio)plastics on soil environment: a review. Sci Total Environ 795:148889. https://doi.org/10.1016/J.SCITOTENV.2021.148889

    Article  CAS  PubMed  Google Scholar 

  175. Bioplastics – European Bioplastics . https://www.european-bioplastics.org/bioplastics/. Accessed 7 Oct 2021

  176. Waste Management – European Bioplastics e.V. https://www.european-bioplastics.org/bioplastics/waste-management/#. Accessed 11 Oct 2021

  177. Zhang X, Wei Z, Xue C (2021) Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1937042

    Article  PubMed  Google Scholar 

  178. Tziveleka L, Ioannou E, Roussis V (2019) Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: a review. Carbohydr Polym 218:355–370. https://doi.org/10.1016/J.CARBPOL.2019.04.074

    Article  CAS  PubMed  Google Scholar 

  179. McAdam B, Fournet MB, McDonald P, Mojicevic M (2020) Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers (Basel) 12:1–20. https://doi.org/10.3390/POLYM12122908

    Article  Google Scholar 

  180. Jendrossek D, Handrick R (2003) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432. https://doi.org/10.1146/ANNUREV.MICRO.56.012302.160838

    Article  Google Scholar 

Download references

Funding

Funding was provided by Sunway University (Grant No. Jeffrey Cheah Foundation Scholarship).

Author information

Authors and Affiliations

Authors

Contributions

XYY: Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing-original draft, Visualization. LTG: Conceptualization, Resources, Review and editing, Supervision. MK: Conceptualization, Resources, Review and editing, Supervision. Y-YY: Conceptualization, Methodology, Software, Validation, Resources, Review and editing, Visualization, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Yoon-Yen Yow.

Ethics declarations

Conflict of interest

There are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIFF 820 KB)

Supplementary Figure 1 Types of algae-based polymers for bioplastic production

Supplementary file2 (TIFF 154 KB)

Supplementary Figure 2 Algae-based bioplastic film production process illustration for Part 3.2.2 and Part 3.2.3

Supplementary file3 (DOCX 249 KB)

Supplementary Table 1 Physiomechanical properties of the algae-based biopolymer on application of packaging

Supplementary file4 (DOCX 137 KB)

Supplementary Table 2 Other properties of the algae-based biopolymer on application of packaging.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, X.Y., Gew, L.T., Khalid, M. et al. Algae-Based Bioplastic for Packaging: A Decade of Development and Challenges (2010–2020). J Polym Environ 31, 833–851 (2023). https://doi.org/10.1007/s10924-022-02620-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02620-0

Keywords

Navigation