Skip to main content
Log in

Physicochemical Properties of Biodegradable Polyvinyl Alcohol–Agar Films from the Red Algae Hydropuntia cornea

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Agar obtained from the red alga Hydropuntia cornea was blended with polyvinyl alcohol (PVOH) in order to produce biodegradable films. In this study, we compare the properties of biopolymeric films formulated with agars extracted from H. cornea collected at different seasons (rainy and dry) in the Gulf of Mexico coast and PVOH as synthetic matrix. The films were prepared at different agar contents (0%, 25%, 50%, 75%, and 100%) and their optical, mechanical, thermal, and morphological properties analyzed. The tensile strength of PVOH–agar films increased when agar content was augmented. The formulation with 50% agar from rainy season (RS) had a significant higher tensile strength when compared to those from dry season (DS; p < 0.05). Tensile modulus also displayed an increasing trend and likewise, for 50% and 75% agar blends from RS showed higher values than those from DS (p < 0.05). In contrast, elongation at break decreased as the agar content increased, independently of the season. Environmental scanning electron microscopy images of PVOH–agar 75% biofilms from RS showed a homogeneous structure with good interfacial adhesion between the two components. The changes evidenced in the FTIR spectrum of this blend suggest that hydrogen bonding is taking place between the agar ether linkages (C-O-C) and the hydroxyl groups (OH) of the PVOH. Based on the above mentioned results, blends of PVOH and 75% agar from H. cornea collected in rainy season showed good properties for applications in the biodegradable packaging industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armisen R, Galatas F (2000) Handbook of hydrocolloids. Phillps G, Willians P (Eds) Woodhead Publishing, UK. 450 pp

  • Assender HE, Windle AH (1998) Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 39(18):4295–4302

    Article  CAS  Google Scholar 

  • ASTM (2001) Standard test method for tensile properties of thin plastics sheeting. Annual book of ASTM standards. D822-01. ASTM. American Society for Testing Materials, Philadelphia, pp 160–168

    Google Scholar 

  • Athalye AS (1992) Plastics in packaging. Tata McGraw-Hill Publishing Company Limited, New Delhi, India

    Google Scholar 

  • Briones AV, Ambal WO, Estrella RR, Pangilinan R, De Vera CJ, Pacis RL, Rodriguez N, Villanueva MA (2004) Tensile and tear strength of carrageenan film from Philippine Eucheuma species. Marine Biotech 6:148–151

    CAS  Google Scholar 

  • Chiellini E, Corti A, D’Antonie S, Solaro R (2003) Biodegradation of poly(vinyl alcohol)-based materials. Prog Polym Sci 28(6):963–1014

    Article  CAS  Google Scholar 

  • Debeaufort F, Phan TD, Luu D, Voilley A (2005) Functional properties of edible agar-based starch-based films for food quality preservation. J Agric Food Chem 53(4):973–981

    Article  PubMed  Google Scholar 

  • Freile-Pelegrin Y, Robledo D (1997a) Influence of alkali treatment on agar from Gracilaria cornea from Yucatán, México. J Appl Phycol 9(6):533–539

    CAS  Google Scholar 

  • Freile-Pelegrin Y, Robledo D (1997b) Effect of season on the agar content and chemical characteristics of Gracialaria cornea from Yucatán, México. Bot Mar 40(4):285–290

    Article  CAS  Google Scholar 

  • Freile-Pelegrín Y, Madera-Santana T, Robledo D, Veleva L, Quintana P, Azamar JA (2007) Degradation of agar films in humid tropical climate: thermal, mechanical, morphological and structural changes. Polym Degrad Stab 92(2):244–252

    Article  Google Scholar 

  • Han JH, Floros JD (1997) Casting antimicrobial packing films and measuring their physical properties and antimicrobial activity. J Plast Film Sheet 13(10):287–298

    CAS  Google Scholar 

  • Hassan C, Peppas N (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional cross-linking or by freezing/thawing methods. J Adv Polymer Sci 153:37–65

    Article  CAS  Google Scholar 

  • Hodge RM, Bastow TJ, Edward GH, Simon GP, Holl AJ (1996) Free volume and the mechanism of plasticization in water swollen poly(vinyl alcohol). Macromolecules 29:8137–8143

    Article  CAS  Google Scholar 

  • Labuschagne PW, Germishuizen WA, Verryn SMC, Moolman FS (2008) Improved oxygen barrier performance of poly(vinyl alcohol) films through hydrogen bond complex with poly(methyl vinyl etherco-maleic acid). Eur Polym J 4:2146–2152

    Article  Google Scholar 

  • Lewandowska K (2009) Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim Acta 493:42–48

    Article  CAS  Google Scholar 

  • Liu C, Bai R (2005) Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance. J Membr Sci 267:68–77

    Article  CAS  Google Scholar 

  • Lyons JG, Geeve LM, Nugent MJD, Kennedy JE, Higginbotham CL (2009) Development and characterization of an agar–polyvinyl alcohol blend hydrogel. J Mech Behav Biomed Mater 2:485–493

    Article  PubMed  Google Scholar 

  • Madera-Santana T, Misra M, Drzal LT, Robledo D, Freile-Pelegrin Y (2009) Preparation and characterization of biodegradable agar/poly(butylene adipateco-terephatalate) composites. Polym Eng Sci 49(6):1117–1126

    Article  CAS  Google Scholar 

  • Madera-Santana T, Robledo D, Azamar JA, Ríos-Soberanis CR, Freile-Pelegrin Y (2010) Preparation and characterization of low density polyethylene–agar biocomposites: torque rheological, mechanical, thermal and morphological properties. Polym Eng Sci 50(3):585–591

    Article  CAS  Google Scholar 

  • Marinho-Soriano E, Bourret E (2003) Effects of seasons on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour Technol 90(3):329–333

    Article  PubMed  CAS  Google Scholar 

  • Mc Gann MJ, Higginbotham CL, Geever LM, Nugent MJD (2009) The synthesis of novel pH-sensitive poly(vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications. Int J Pharmacogn 372(1–2):154–1618

    CAS  Google Scholar 

  • Mucha M, Pawlak A (2005) Thermal analysis of chitosan and its blends. Thermochim Acta 427(1–2):69–76

    Article  CAS  Google Scholar 

  • Odian G (1991) Principles of polymerization, 3rd edn. Wiley, New York

    Google Scholar 

  • Orduña-Rojas J, Robledo D (2002) Studies on the tropical agarophyte Gracilaria cornea J. Agardh (Rhodophyta, Gracilariales) from Yucatán, Mexico. II. Biomass assessment and reproductive phenology. Bot Mar 45:459–464

    Article  Google Scholar 

  • Ku TH, Lin ChA (2005) Rheological properties of thermoplastic polyvinyl alcohol and polypropylene blend melts in capillary extrusions. J Polym Res 12:23–29

    Article  CAS  Google Scholar 

  • Rochas C, Lahaye M (1989) Average molecular weight and molecular weight distribution of agarose and agarose-type polysaccharides. Carbohydr Polym 10:289–298

    Article  CAS  Google Scholar 

  • Sakai K, Hamada N, Watanabe Y (1986) Degradation mechanism of poly(vinyl alcohol) by successive reactions of secondary alcohol oxidase and β-diketone hydrolase from Pseudomonas sp. Agr Biol Chem 50(9):989–996

    Google Scholar 

  • Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12(3):242–247

    Article  PubMed  CAS  Google Scholar 

  • Solaro R, Corti A, Cinelli P, D’Antone S, Kenawy ER (2002) Biodegradation of poly(vinyl alcohol) in soil environment: influence of natural organic fillers and structural parameters. Macromol Chem Phys 203(10–11):1526–1531

    Google Scholar 

  • Takasu A, Aoi K, Tsuchiya M, Okada M (1999) New chitin-based polymer hybrids, 4: soil burial degradation behavior of poly(vinyl alcohol)/chitin derivative miscible blends. J Appl Polym Sci 73(7):1171–79

    Article  CAS  Google Scholar 

  • Tako M, Higa K, Medoruma K, Nakasone Y (1999) A highly methylated agar from red seaweed, Gracilaria arcuata. Bot Mar 42:513–517

    Article  CAS  Google Scholar 

  • Tharanathan R (2003) Biodegradable films and composite coatings: past, present and future. Critical Review in Food Science and Technology 14:71–78

    CAS  Google Scholar 

  • Tsiapouris A, Linke L (2000) Water vapor sorption determination of starch based porous packing materials. Starch-Stärke 52(2–3):53–57

    Article  CAS  Google Scholar 

  • Villanueva RD, Montaño NE, Romero JB, Aliganga AK, Enriquez EP (1999) Seasonal variations in yield, gelling properties and chemical composition of agars from Gracialaria eucheumoides and Gelidiella acerosa (Rhodophyta) from Philippines. Bot Mar 42(2):175–182

    Article  CAS  Google Scholar 

  • Whyte JNC, Hosford SPC, Englar JR (1985) Assignment of agar or carrageenan structures to red algal polysaccharides. Carbohydr Res 140:336–341

    Article  CAS  Google Scholar 

  • Wunderlich B (2006) The application of MTDSC to polymer melting. In: Hourston DJ, Reading M (eds) Editors, modulated temperature differential scanning calorimetry: theoretical and practical applications in polymer characterization. Springer, Dordrecht, Netherlands, pp 217–320

    Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  • Zheng H, Du Y, Yu J, Huang R, Zhang L (2001) Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. J Appl Polym Sci 80(13):2558–2565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by SAGARPA-CONACYT grant No. 2002-CO3-1057. Madera-Santana wants to thank FIQ-UADY for providing tensile test equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Freile-Pelegrín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madera-Santana, T.J., Robledo, D. & Freile-Pelegrín, Y. Physicochemical Properties of Biodegradable Polyvinyl Alcohol–Agar Films from the Red Algae Hydropuntia cornea . Mar Biotechnol 13, 793–800 (2011). https://doi.org/10.1007/s10126-010-9341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9341-8

Keywords

Navigation