Skip to main content

Advertisement

Log in

Emerging biotechnological strategies for non-viral antiangiogenic gene therapy

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis has emerged as a promising target of cancer treatment. With the development of biotechnology, major progress has been made in the exploring effective therapies on targeting tumor angiogenesis over the last 20 years. Gene therapy has attracted considerable interest by virtue of the capabilities of expressing sustained levels of therapeutic agents within cells of the patients. However, the major challenge of gene therapy is the efficient delivery of therapeutic gene to the target site. Compared with viral strategies, non-viral strategies were more acceptable by their widely recognized security and lower side effects. This paper reviews the basic biology of angiogenesis, the potential advantages of antiangiogenic gene therapy, the therapeutic genetic drugs developed through biotechnology, as well as the biotechnological strategies that enhancing non-viral gene therapy targeting to tumor angiogenesis in a more controlled manner, with great respect to RNA interference, ligand-directed vascular targeting strategies, vascular endothelial growth factor pathway and tumor associated macrophages targeting. In conclusion, antiangiogenic gene therapy holds great promise in advancing cancer therapy. Developing better non-viral biotechnological platforms will benefit antiangiogenic targeted cancer gene therapeutic methods, support their evaluation in human clinical trials and realize the actual utilization in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMD:

Age-related macular degeneration

APN:

Aminopeptidase N

ASODN:

Antisense oligonucleotides

bFGF:

Basic fibroblast growth factor

bPEI:

Branched polyethylenimine

CML:

Chronic myelogenous leukemia

CNV:

Choroidal neovascularization

DAS:

Dorsal air sac

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

Pidermal growth factor receptor

Fab:

Antibody fragment

FGF-2:

Fibroblast growth factor-2

Flk-1:

Fetal liver kinase 1

GIST:

Gastrointestinal stromal tumor

HER2:

Human epidermal growth factor receptor 2

HUVEC:

Human umbilical vein endothelial cell

IFN-γ:

Interferon-gamma

IL-12:

Interleukin-12

IV:

Intravenous injection

IVT:

Intravitreal injection

KDR:

Kinase insert domain protein receptor

LLC:

Lewis lung carcinoma

Man-SLN:

Mannan-modified SLN

mCRC:

Metastatic colorectal cancer

Mgl:

Macrophage galactose-type lectin

MMPs:

Matrixmetalloproteinases

mRNA:

Messenger RNA

MVD:

Microvessel density

NCI:

National Cancer Institute

NGR:

Asparagine-glycine-arginine

NK:

Natural killer

NSCLC:

Non-small cell lung cancer

PAA:

Poly(amido amine)

PDGF:

Platelet-derived growth factor

PDGFR:

Platelet-derived growth factor receptor

pDMAEMA:

Poly(2-(dimethyl-amino) ethylmethacrylate)

PEC:

Polyelectrolyte complex

PEDF:

Pigment epithelium-derived factor

PEI:

Poly(ethyleneimine)

PGF:

Placenta growth factor

Ph + ALL:

Philadelphia chromosome-positive acute lymphoblastic leukemia

PIGF:

Placenta growth factors

PLGA:

Poly(lactic-co-glycolic acid)

PLL:

Poly(l-lysine)

PVDF:

Poly(vinylidene fluoride)

RCC:

Renal cell carcinoma

RGD:

Arginine-glycine-aspartic acid

RNAi:

RNA interference

RPE:

Retinal pigment epithelial

RTK:

Receptor tyrosine kinase

RTKIs:

Receptor tyrosine kinase inhibitors

sFlt-1:

Soluble vascular endothelial growth factor receptor-1

siRNA:

Small interfering RNA

SLN:

Solid lipid nanoparticles

TAM:

Tumor associated macrophages

THSBs:

Thrombospondins

TNF-α:

Tumor necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

VEGFR-2:

Vascular endothelial growth factor receptor-2

References

  1. Segal E, Satchi-Fainaro R (2009) Design and development of polymer conjugates as anti-angiogenic agents. Adv Drug Deliv Rev 61(13):1159–1176. doi:10.1016/j.addr.2009.06.005

    Article  PubMed  CAS  Google Scholar 

  2. Cao Y (2010) Angiogenesis: what can it offer for future medicine? Exp Cell Res 316(8):1304–1308. doi:10.1016/j.yexcr.2010.02.031

    Article  PubMed  CAS  Google Scholar 

  3. Oshima Y, Yajima S, Yamazaki K, Matsushita K, Tagawa M, Shimada H (2010) Angiogenesis-related factors are molecular targets for diagnosis and treatment of patients with esophageal carcinoma. Ann Thorac Cardiovasc Surg 16(6):389–393

    PubMed  Google Scholar 

  4. Oba M, Vachutinsky Y, Miyata K, Kano MR, Ikeda S, Nishiyama N, Itaka K, Miyazono K, Koyama H, Kataoka K (2010) Antiangiogenic gene therapy of solid tumor by systemic injection of polyplex micelles loading plasmid DNA encoding soluble flt-1. Mol Pharm 7(2):501–509. doi:10.1021/mp9002317

    Article  PubMed  CAS  Google Scholar 

  5. Hodish I, Tal R, Shaish A, Varda-Bloom N, Greenberger S, Rauchwerger A, Breitbart E, Bangio L, Ben-Shushan D, Pfeffer R, Feder B, Waitsman A, Barshack I, Goldberg I, Mazaki-Tovi S, Peled M, Harats D (2009) Systemic administration of radiation-potentiated anti-angiogenic gene therapy against primary and metastatic cancer based on transcriptionally controlled HSV-TK. Cancer Biol Ther 8(5):424–432

    PubMed  Google Scholar 

  6. Wyder L, Suply T, Ricoux B, Billy E, Schnell C, Baumgarten BU, Maira SM, Koelbing C, Ferretti M, Kinzel B, Muller M, Seuwen K, Ludwig MG (2011) Reduced pathological angiogenesis and tumor growth in mice lacking GPR4, a proton sensing receptor. Angiogenesis 14(4):533–544. doi:10.1007/s10456-011-9238-9

    Article  PubMed  CAS  Google Scholar 

  7. Mitsos S, Katsanos K, Koletsis E, Kagadis GC, Anastasiou N, Diamantopoulos A, Karnabatidis D, Dougenis D (2012) Therapeutic angiogenesis for myocardial ischemia revisited: basic biological concepts and focus on latest clinical trials. Angiogenesis 15(1):1–22. doi:10.1007/s10456-011-9240-2

    Article  PubMed  CAS  Google Scholar 

  8. Shojaei F (2012) Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett 320(2):130–137. doi:10.1016/j.canlet.2012.03.008

    Article  PubMed  CAS  Google Scholar 

  9. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7(6):383–388. doi:10.1038/nnano.2012.45

    Article  PubMed  CAS  Google Scholar 

  10. Ingold B, Simon E, Ungethum U, Kuban RJ, Muller BM, Lupp A, Neumann U, Ebert MP, Denkert C, Weichert W, Schulz S, Rocken C (2010) Vascular CXCR4 expression—a novel antiangiogenic target in gastric cancer? PLoS ONE 5(4):e10087. doi:10.1371/journal.pone.0010087

    Article  PubMed  CAS  Google Scholar 

  11. Krambeck AE, Thompson RH, Dong H, Lohse CM, Park ES, Kuntz SM, Leibovich BC, Blute ML, Cheville JC, Kwon ED (2006) B7–H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc Natl Acad Sci USA 103(27):10391–10396. doi:10.1073/pnas.0600937103

    Article  PubMed  CAS  Google Scholar 

  12. Berger M, Bergers G, Arnold B, Hammerling GJ, Ganss R (2005) Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 105(3):1094–1101. doi:10.1182/blood-2004-06-2315

    Article  PubMed  CAS  Google Scholar 

  13. Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH, Rabie T, Kaden S, Grone HJ, Hammerling GJ, Arnold B, Ganss R (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453(7193):410–414. doi:10.1038/nature06868

    Article  PubMed  CAS  Google Scholar 

  14. Ziche M, Donnini S, Morbidelli L (2004) Development of new drugs in angiogenesis. Curr Drug Targets 5(5):485–493

    Article  PubMed  CAS  Google Scholar 

  15. Stahl A, Joyal JS, Chen J, Sapieha P, Juan AM, Hatton CJ, Pei DT, Hurst CG, Seaward MR, Krah NM, Dennison RJ, Greene ER, Boscolo E, Panigrahy D, Smith LE (2012) SOCS3 is an endogenous inhibitor of pathologic angiogenesis. Blood. doi:10.1182/blood-2012-04-422527

    PubMed  Google Scholar 

  16. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591. doi:10.1038/nrc2403

    Article  PubMed  CAS  Google Scholar 

  17. Taraboletti G, Rusnati M, Ragona L, Colombo G (2010) Targeting tumor angiogenesis with TSP-1-based compounds: rational design of antiangiogenic mimetics of endogenous inhibitors. Oncotarget 1(7):662–673

    PubMed  Google Scholar 

  18. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  19. Mross K, Frost A, Scheulen ME, Krauss J, Strumberg D, Schultheiss B, Fasol U, Buchert M, Kratzschmer J, Delesen H, Rajagopalan P, Christensen O (2011) Phase I study of telatinib (BAY 57–9352): analysis of safety, pharmacokinetics, tumor efficacy, and biomarkers in patients with colorectal cancer. Vasc Cell 3:16. doi:10.1186/2045-824X-3-16

    Article  PubMed  CAS  Google Scholar 

  20. Bourboulia D, Jensen-Taubman S, Rittler MR, Han HY, Chatterjee T, Wei B, Stetler-Stevenson WG (2011) Endogenous angiogenesis inhibitor blocks tumor growth via direct and indirect effects on tumor microenvironment. Am J Pathol 179(5):2589–2600. doi:10.1016/j.ajpath.2011.07.035

    Article  PubMed  CAS  Google Scholar 

  21. Kunnakkat S, Narayana A (2011) Bevacizumab in the treatment of high-grade gliomas: an overview. Angiogenesis 14(4):423–430. doi:10.1007/s10456-011-9232-2

    Article  PubMed  CAS  Google Scholar 

  22. Ghaedi M, Soleimani M, Taghvaie NM, Sheikhfatollahi M, Azadmanesh K, Lotfi AS, Wu J (2011) Mesenchymal stem cells as vehicles for targeted delivery of anti-angiogenic protein to solid tumors. J Gene Med 13(3):171–180. doi:10.1002/jgm.1552

    Article  PubMed  CAS  Google Scholar 

  23. Cressman S, Dobson I, Lee JB, Tam YY, Cullis PR (2009) Synthesis of a labeled RGD-lipid, its incorporation into liposomal nanoparticles, and their trafficking in cultured endothelial cells. Bioconjug Chem 20(7):1404–1411. doi:10.1021/bc900041f

    Article  PubMed  CAS  Google Scholar 

  24. Kim SW, Kim WJ, Yockman JW, Lee M, Jeong JH, Kim YH (2005) Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J Control Release 106(1–2):224–234. doi:10.1016/j.jconrel.2005.04.016

    Article  PubMed  CAS  Google Scholar 

  25. Brock CS, Lee SM (2002) Anti-angiogenic strategies and vascular targeting in the treatment of lung cancer. Eur Respir J 19(3):557–570

    Article  PubMed  CAS  Google Scholar 

  26. Brandwijk RJ, Griffioen AW, Thijssen VL (2007) Targeted gene-delivery strategies for angiostatic cancer treatment. Trends Mol Med 13(5):200–209. doi:10.1016/j.molmed.2007.03.001

    Article  PubMed  CAS  Google Scholar 

  27. Quesada AR, Munoz-Chapuli R, Medina MA (2006) Anti-angiogenic drugs: from bench to clinical trials. Med Res Rev 26(4):483–530. doi:10.1002/med.20059

    Article  PubMed  CAS  Google Scholar 

  28. Kleinman HK, Liau G (2001) Gene therapy for antiangiogenesis. J Natl Cancer Inst 93(13):965–967

    Article  PubMed  CAS  Google Scholar 

  29. Tebes SJ, Kruk PA (2005) The genesis of RNA interference, its potential clinical applications, and implications in gynecologic cancer. Gynecol Oncol 99(3):736–741. doi:10.1016/j.ygyno.2005.08.031

    Article  PubMed  CAS  Google Scholar 

  30. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG (2008) Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release 129(2):107–116. doi:10.1016/j.jconrel.2008.03.008

    Article  PubMed  CAS  Google Scholar 

  31. Green JJ, Chiu E, Leshchiner ES, Shi J, Langer R, Anderson DG (2007) Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett 7(4):874–879. doi:10.1021/nl062395b

    Article  PubMed  CAS  Google Scholar 

  32. Green JJ, Langer R, Anderson DG (2008) A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res 41(6):749–759. doi:10.1021/ar7002336

    Article  PubMed  CAS  Google Scholar 

  33. Conley SM, Naash MI (2010) Nanoparticles for retinal gene therapy. Prog Retin Eye Res 29(5):376–397. doi:10.1016/j.preteyeres.2010.04.004

    Article  PubMed  CAS  Google Scholar 

  34. Makarevich P, Tsokolaeva Z, Shevelev A, Rybalkin I, Shevchenko E, Beloglazova I, Vlasik T, Tkachuk V, Parfyonova Y (2012) Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle. PLoS ONE 7(6):e38776. doi:10.1371/journal.pone.0038776

    Article  PubMed  CAS  Google Scholar 

  35. Andrieu-Soler C, Doat M, Halhal M, Keller N, Jonet L, BenEzra D, Behar-Cohen F (2006) Enhanced oligonucleotide delivery to mouse retinal cells using iontophoresis. Mol Vis 12:1098–1107

    PubMed  CAS  Google Scholar 

  36. Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9(24):1647–1652. doi:10.1038/sj.gt.3301923

    Article  PubMed  CAS  Google Scholar 

  37. Heller LC, Heller R (2006) In vivo electroporation for gene therapy. Hum Gene Ther 17(9):890–897. doi:10.1089/hum.2006.17.890

    Article  PubMed  CAS  Google Scholar 

  38. Murakami T, Sunada Y (2011) Plasmid DNA gene therapy by electroporation: principles and recent advances. Curr Gene Ther 11(6):447–456

    Article  PubMed  CAS  Google Scholar 

  39. Li Y, Wang J, Satterle A, Liu F (2012) Gene transfer to skeletal muscle by site-specific delivery of electroporation and ultrasound. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2012.06.090

    Google Scholar 

  40. Cai X, Conley SM, Nash Z, Fliesler SJ, Cooper MJ, Naash MI (2010) Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J 24(4):1178–1191. doi:10.1096/fj.09-139147

    Article  PubMed  CAS  Google Scholar 

  41. Cai X, Nash Z, Conley SM, Fliesler SJ, Cooper MJ, Naash MI (2009) A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles. PLoS ONE 4(4):e5290. doi:10.1371/journal.pone.0005290

    Article  PubMed  CAS  Google Scholar 

  42. Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K, Robinson JP, Bhunia AK, Mohammed S, Bashir R (2007) Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat Nanotechnol 2(7):441–449. doi:10.1038/nnano.2007.149

    Article  PubMed  CAS  Google Scholar 

  43. Gardlik R, Behuliak M, Palffy R, Celec P, Li CJ (2011) Gene therapy for cancer: bacteria-mediated anti-angiogenesis therapy. Gene Ther 18(5):425–431. doi:10.1038/gt.2010.176

    Article  PubMed  CAS  Google Scholar 

  44. Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17(5):767–777. doi:10.1038/mt.2009.41

    Article  PubMed  CAS  Google Scholar 

  45. van Pijkeren JP, Morrissey D, Monk IR, Cronin M, Rajendran S, O’Sullivan GC, Gahan CG, Tangney M (2010) A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy. Hum Gene Ther 21(4):405–416. doi:10.1089/hum.2009.022

    Article  PubMed  CAS  Google Scholar 

  46. Schoen C, Loeffler DI, Frentzen A, Pilgrim S, Goebel W, Stritzker J (2008) Listeria monocytogenes as novel carrier system for the development of live vaccines. Int J Med Microbiol 298(1–2):45–58. doi:10.1016/j.ijmm.2007.09.002

    Article  PubMed  CAS  Google Scholar 

  47. Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I, Goebel W, Szalay AA (2004) Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 22(3):313–320. doi:10.1038/nbt937

    Article  PubMed  CAS  Google Scholar 

  48. Gardlik R, Hodosy J, Palffy R, Behuliak M, Janega P, Celec P (2010) Effects of orally administered bacteria carrying HIF-1alpha gene in an experimental model of intestinal ischemia. Arch Med Res 41(5):332–337. doi:10.1016/j.arcmed.2010.07.009

    Article  PubMed  CAS  Google Scholar 

  49. Palffy R, Gardlik R, Hodosy J, Behuliak M, Resko P, Radvansky J, Celec P (2006) Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther 13(2):101–105. doi:10.1038/sj.gt.3302635

    Article  PubMed  CAS  Google Scholar 

  50. Cao S, Cripps A, Wei MQ (2010) New strategies for cancer gene therapy: progress and opportunities. Clin Exp Pharmacol Physiol 37(1):108–114. doi:10.1111/j.1440-1681.2009.05268.x

    Article  PubMed  CAS  Google Scholar 

  51. Schoen C, Kolb-Maurer A, Geginat G, Loffler D, Bergmann B, Stritzker J, Szalay AA, Pilgrim S, Goebel W (2005) Bacterial delivery of functional messenger RNA to mammalian cells. Cell Microbiol 7(5):709–724. doi:10.1111/j.1462-5822.2005.00507.x

    Article  PubMed  CAS  Google Scholar 

  52. Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA, Varathalingam A, Nunez-Alonso G, Green AM, Bazzani RP, Sumner-Jones SG, Chan M, Li H, Yew NS, Cheng SH, Boyd AC, Davies JC, Griesenbach U, Porteous DJ, Sheppard DN, Munkonge FM, Alton EW, Gill DR (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 26(5):549–551. doi:10.1038/nbt1399

    Article  PubMed  CAS  Google Scholar 

  53. Loessner H, Weiss S (2004) Bacteria-mediated DNA transfer in gene therapy and vaccination. Expert Opin Biol Ther 4(2):157–168. doi:10.1517/14712598.4.2.157

    Article  PubMed  CAS  Google Scholar 

  54. Celec P, Gardlik R, Palffy R, Hodosy J, Stuchlik S, Drahovska H, Stuchlikova M, Minarik G, Lukacs J, Jurkovicova I, Hulin I, Turna J, Jakubovsky J, Kopani M, Danisovic L, Jandzik D, Kudela M, Yonemitsu Y (2005) The use of transformed Escherichia coli for experimental angiogenesis induced by regulated in situ production of vascular endothelial growth factor–an alternative gene therapy. Med Hypotheses 64(3):505–511. doi:10.1016/j.mehy.2004.07.039

    Article  PubMed  CAS  Google Scholar 

  55. Park HJ, Yang F, Cho SW (2012) Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv Drug Deliv Rev 64(1):40–52. doi:10.1016/j.addr.2011.09.005

    Article  PubMed  CAS  Google Scholar 

  56. Krasnici S, Werner A, Eichhorn ME, Schmitt-Sody M, Pahernik SA, Sauer B, Schulze B, Teifel M, Michaelis U, Naujoks K, Dellian M (2003) Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105(4):561–567. doi:10.1002/ijc.11108

    Article  PubMed  CAS  Google Scholar 

  57. Zhao W, Zhuang S, Qi XR (2011) Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int J Nanomedicine 6:3087–3098. doi:10.2147/IJN.S25399

    PubMed  CAS  Google Scholar 

  58. Kuesters GM, Campbell RB (2010) Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine (Lond) 5(2):181–192. doi:10.2217/nnm.09.105

    Article  CAS  Google Scholar 

  59. Chen SH, Zhaori G (2011) Potential clinical applications of siRNA technique: benefits and limitations. Eur J Clin Invest 41(2):221–232. doi:10.1111/j.1365-2362.2010.02400.x

    Article  PubMed  CAS  Google Scholar 

  60. Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43(42):13348–13356. doi:10.1021/bi048950a

    Article  PubMed  CAS  Google Scholar 

  61. Gary DJ, Puri N, Won YY (2007) Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 121(1–2):64–73. doi:10.1016/j.jconrel.2007.05.021

    Article  PubMed  CAS  Google Scholar 

  62. Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT (2012) Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater 11(4):316–322. doi:10.1038/nmat3253

    Article  PubMed  CAS  Google Scholar 

  63. Tagami T, Suzuki T, Matsunaga M, Nakamura K, Moriyoshi N, Ishida T, Kiwada H (2012) Anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery. Int J Pharm 422(1–2):280–289. doi:10.1016/j.ijpharm.2011.10.059

    Article  PubMed  CAS  Google Scholar 

  64. Ko YT, Falcao C, Torchilin VP (2009) Cationic liposomes loaded with proapoptotic peptide D-(KLAKLAK)(2) and Bcl-2 antisense oligodeoxynucleotide G3139 for enhanced anticancer therapy. Mol Pharm 6(3):971–977. doi:10.1021/mp900006h

    Article  PubMed  CAS  Google Scholar 

  65. Ming X, Sato K, Juliano RL (2011) Unconventional internalization mechanisms underlying functional delivery of antisense oligonucleotides via cationic lipoplexes and polyplexes. J Control Release 153(1):83–92. doi:10.1016/j.jconrel.2011.04.029

    Article  PubMed  CAS  Google Scholar 

  66. Popplewell LJ, Abu-Dayya A, Khana T, Flinterman M, Abdul Khalique N, Raju L, Opstad CL, Sliwka HR, Partali V, Dickson G, Pungente MD (2012) Novel cationic carotenoid lipids as delivery vectors of antisense oligonucleotides for exon skipping in Duchenne muscular dystrophy. Molecules 17(2):1138–1148. doi:10.3390/molecules17021138

    Article  PubMed  CAS  Google Scholar 

  67. Hagigit T, Abdulrazik M, Valamanesh F, Behar-Cohen F, Benita S (2011) Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: an in vivo study in rats and mice. J Control Release. doi:10.1016/j.jconrel.2011.11.022

    PubMed  Google Scholar 

  68. Bruxel F, Cojean S, Bochot A, Teixeira H, Bories C, Loiseau PM, Fattal E (2011) Cationic nanoemulsion as a delivery system for oligonucleotides targeting malarial topoisomerase II. Int J Pharm 416(2):402–409. doi:10.1016/j.ijpharm.2011.01.048

    Article  PubMed  CAS  Google Scholar 

  69. Peddada LY, Harris NK, Devore DI, Roth CM (2009) Novel graft copolymers enhance in vitro delivery of antisense oligonucleotides in the presence of serum. J Control Release 140(2):134–140. doi:10.1016/j.jconrel.2009.08.008

    Article  PubMed  CAS  Google Scholar 

  70. Kuramoto Y, Nishikawa M, Hyoudou K, Yamashita F, Hashida M (2006) Inhibition of peritoneal dissemination of tumor cells by single dosing of phosphodiester CpG oligonucleotide/cationic liposome complex. J Control Release 115(2):226–233. doi:10.1016/j.jconrel.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  71. Sun T, Zhang Z, Cao X, Zhang M, Zhao X, Zhang Q, Chen M (2011) Antisense oligodeoxynucleotide complexation with phosphoryl-choline diblock copolymers and its effect on cell transfection. J Control Release 152(Suppl 1):e172–e173. doi:10.1016/j.jconrel.2011.08.070

    Article  PubMed  CAS  Google Scholar 

  72. Weerasinghe P, Li Y, Guan Y, Zhang R, Tweardy DJ, Jing N (2008) T40214/PEI complex: a potent therapeutics for prostate cancer that targets STAT3 signaling. Prostate 68(13):1430–1442. doi:10.1002/pros.20807

    Article  PubMed  CAS  Google Scholar 

  73. Gu SZ, Zhao XH, Zhang LX, Li L, Wang ZY, Meng M, An GL (2009) Anti-angiogenesis effect of generation 4 polyamidoamine/vascular endothelial growth factor antisense oligodeoxynucleotide on breast cancer in vitro. J Zhejiang Univ Sci B 10(3):159–167. doi:10.1631/jzus.B0820175

    Article  PubMed  CAS  Google Scholar 

  74. Tandle A, Blazer DG 3rd, Libutti SK (2004) Antiangiogenic gene therapy of cancer: recent developments. J Transl Med 2(1):22. doi:10.1186/1479-5876-2-22

    Article  PubMed  CAS  Google Scholar 

  75. Liu CC, Shen Z, Kung HF, Lin MC (2006) Cancer gene therapy targeting angiogenesis: an updated review. World J Gastroenterol 12(43):6941–6948

    PubMed  CAS  Google Scholar 

  76. Gardlik R, Celec P, Bernadic M (2011) Targeting angiogenesis for cancer (gene) therapy. Bratisl Lek Listy 112(8):428–434

    PubMed  CAS  Google Scholar 

  77. Sangro B, Qian C, Schmitz V, Prieto J (2002) Gene therapy of hepatocellular carcinoma and gastrointestinal tumors. Ann NY Acad Sci 963:6–12

    Article  PubMed  CAS  Google Scholar 

  78. Dickerson EB, Akhtar N, Steinberg H, Wang ZY, Lindstrom MJ, Padilla ML, Auerbach R, Helfand SC (2004) Enhancement of the antiangiogenic activity of interleukin-12 by peptide targeted delivery of the cytokine to alphavbeta3 integrin. Mol Cancer Res 2(12):663–673

    PubMed  CAS  Google Scholar 

  79. Hallaj-Nezhadi S, Valizadeh H, Dastmalchi S, Baradaran B, Jalali MB, Dobakhti F, Lotfipour F (2011) Preparation of chitosan-plasmid DNA nanoparticles encoding interleukin-12 and their expression in CT-26 colon carcinoma cells. J Pharm Pharm Sci 14(2):181–195

    PubMed  CAS  Google Scholar 

  80. Charoensit P, Kawakami S, Higuchi Y, Yamashita F, Hashida M (2010) Enhanced growth inhibition of metastatic lung tumors by intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes in mice. Cancer Gene Ther 17(7):512–522. doi:10.1038/cgt.2010.12

    Article  PubMed  CAS  Google Scholar 

  81. Anwer K, Barnes MN, Fewell J, Lewis DH, Alvarez RD (2010) Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene Ther 17(3):360–369. doi:10.1038/gt.2009.159

    Article  PubMed  CAS  Google Scholar 

  82. Fewell JG, Matar MM, Rice JS, Brunhoeber E, Slobodkin G, Pence C, Worker M, Lewis DH, Anwer K (2009) Treatment of disseminated ovarian cancer using nonviral interleukin-12 gene therapy delivered intraperitoneally. J Gene Med 11(8):718–728. doi:10.1002/jgm.1356

    Article  PubMed  CAS  Google Scholar 

  83. Yang F, Jin C, Jiang YJ, Li J, Di Y, Fu DL (2011) Potential role of soluble VEGFR-1 in antiangiogenesis therapy for cancer. Expert Rev Anticancer Ther 11(4):541–549. doi:10.1586/era.10.171

    Article  PubMed  CAS  Google Scholar 

  84. Zhu H, Li Z, Mao S, Ma B, Zhou S, Deng L, Liu T, Cui D, Zhao Y, He J, Yi C, Huang Y (2011) Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium Infantis on Lewis lung cancer in mice. Cancer Gene Ther 18(12):884–896. doi:10.1038/cgt.2011.57

    Article  PubMed  CAS  Google Scholar 

  85. Kim WJ, Yockman JW, Jeong JH, Christensen LV, Lee M, Kim YH, Kim SW (2006) Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice. J Control Release 114(3):381–388. doi:10.1016/j.jconrel.2006.05.029

    Article  PubMed  CAS  Google Scholar 

  86. Kommareddy S, Amiji M (2007) Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther 14(5):488–498. doi:10.1038/sj.cgt.7701041

    Article  PubMed  CAS  Google Scholar 

  87. Anguissola S, McCormack WJ, Morrin MA, Higgins WJ, Fox DM, Worrall DM (2011) Pigment epithelium-derived factor (PEDF) interacts with transportin SR2, and active nuclear import is facilitated by a novel nuclear localization motif. PLoS ONE 6(10):e26234. doi:10.1371/journal.pone.0026234

    Article  PubMed  CAS  Google Scholar 

  88. Ek ET, Dass CR, Choong PF (2006) Pigment epithelium-derived factor: a multimodal tumor inhibitor. Mol Cancer Ther 5(7):1641–1646. doi:10.1158/1535-7163.MCT-06-0107

    Article  PubMed  CAS  Google Scholar 

  89. Dass CR, Contreras KG, Dunstan DE, Choong PF (2007) Chitosan microparticles encapsulating PEDF plasmid demonstrate efficacy in an orthotopic metastatic model of osteosarcoma. Biomaterials 28(19):3026–3033. doi:10.1016/j.biomaterials.2007.03.016

    Article  PubMed  CAS  Google Scholar 

  90. Cui FY, Song XR, Li ZY, Li SZ, Mu B, Mao YQ, Wei YQ, Yang L (2010) The pigment epithelial-derived factor gene loaded in PLGA nanoparticles for therapy of colon carcinoma. Oncol Rep 24(3):661–668

    PubMed  CAS  Google Scholar 

  91. Zhao MD, Sun YM, Fu GF, Du YZ, Chen FY, Yuan H, Zheng CH, Zhang XM, Hu FQ (2012) Gene therapy of endometriosis introduced by polymeric micelles with glycolipid-like structure. Biomaterials 33(2):634–643. doi:10.1016/j.biomaterials.2011.09.077

    Article  PubMed  CAS  Google Scholar 

  92. Deshayes S, Maurizot V, Clochard MC, Baudin C, Berthelot T, Esnouf S, Lairez D, Moenner M, Deleris G (2011) “Click” conjugation of peptide on the surface of polymeric nanoparticles for targeting tumor angiogenesis. Pharm Res 28(7):1631–1642. doi:10.1007/s11095-011-0398-5

    Article  PubMed  CAS  Google Scholar 

  93. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840. doi:10.1038/nm731

    PubMed  CAS  Google Scholar 

  94. Oh EJ, Choi JS, Kim H, Joo CK, Hahn SK (2011) Anti-Flt1 peptide—hyaluronate conjugate for the treatment of retinal neovascularization and diabetic retinopathy. Biomaterials 32(11):3115–3123. doi:10.1016/j.biomaterials.2011.01.003

    Article  PubMed  CAS  Google Scholar 

  95. Hajitou A, Pasqualini R, Arap W (2006) Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med 16(3):80–88. doi:10.1016/j.tcm.2006.01.003

    Article  PubMed  CAS  Google Scholar 

  96. Temming K, Schiffelers RM, Molema G, Kok RJ (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat 8(6):381–402. doi:10.1016/j.drup.2005.10.002

    Article  PubMed  CAS  Google Scholar 

  97. Salehi-Had H, Roh MI, Giani A, Hisatomi T, Nakao S, Kim IK, Gragoudas ES, Vavvas D, Guccione S, Miller JW (2011) Utilizing targeted gene therapy with nanoparticles binding alpha v beta 3 for imaging and treating choroidal neovascularization. PLoS ONE 6(4):e18864. doi:10.1371/journal.pone.0018864

    Article  PubMed  CAS  Google Scholar 

  98. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    PubMed  CAS  Google Scholar 

  99. Yamashita M, Kajiyama H, Terauchi M, Shibata K, Ino K, Nawa A, Mizutani S, Kikkawa F (2007) Involvement of aminopeptidase N in enhanced chemosensitivity to paclitaxel in ovarian carcinoma in vitro and in vivo. Int J Cancer 120(10):2243–2250. doi:10.1002/ijc.22528

    Article  PubMed  CAS  Google Scholar 

  100. Chen Y, Wu JJ, Huang L (2010) Nanoparticles targeted with NGR motif deliver c-myc siRNA and doxorubicin for anticancer therapy. Mol Ther 18(4):828–834. doi:10.1038/mt.2009.291

    Article  PubMed  CAS  Google Scholar 

  101. Liu C, Yu W, Chen Z, Zhang J, Zhang N (2011) Enhanced gene transfection efficiency in CD13-positive vascular endothelial cells with targeted poly(lactic acid)-poly(ethylene glycol) nanoparticles through caveolae-mediated endocytosis. J Control Release 151(2):162–175. doi:10.1016/j.jconrel.2011.02.027

    Article  PubMed  CAS  Google Scholar 

  102. Delli Carpini J, Karam AK, Montgomery L (2010) Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis 13(1):43–58. doi:10.1007/s10456-010-9163-3

    Article  PubMed  CAS  Google Scholar 

  103. Ambasta RK, Sharma A, Kumar P (2011) Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy. Vasc Cell 3:26. doi:10.1186/2045-824X-3-26

    Article  PubMed  CAS  Google Scholar 

  104. Cao Y (2009) Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal 2(59):re1. doi:10.1126/scisignal.259re1

  105. Ferrara N (2009) VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw 20(4):158–163. doi:10.1684/ecn.2009.0170

    PubMed  CAS  Google Scholar 

  106. Damasceno M (2011) Bevacizumab for the first-line treatment of human epidermal growth factor receptor 2-negative advanced breast cancer. Curr Opin Oncol 23(Suppl):S3–S9. doi:10.1097/01.cco.0000397417.75245.9c

    Article  PubMed  CAS  Google Scholar 

  107. Yardley DA, Raefsky E, Castillo R, Lahiry A, Locicero R, Thompson D, Shastry M, Burris HA 3rd, Hainsworth JD (2011) Phase II study of neoadjuvant weekly nab-paclitaxel and carboplatin, with bevacizumab and trastuzumab, as treatment for women with locally advanced HER2 + breast cancer. Clin Breast Cancer 11(5):297–305. doi:10.1016/j.clbc.2011.04.002

    Article  PubMed  CAS  Google Scholar 

  108. Bisacchi D, Benelli R, Vanzetto C, Ferrari N, Tosetti F, Albini A (2003) Anti-angiogenesis and angioprevention: mechanisms, problems and perspectives. Cancer Detect Prev 27(3):229–238

    Article  PubMed  CAS  Google Scholar 

  109. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. doi:10.1038/nm0603-669

    Article  PubMed  CAS  Google Scholar 

  110. Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, Pyles EA, Yancopoulos GD, Stahl N, Wiegand SJ (2012) Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. doi:10.1007/s10456-011-9249-6

    PubMed  Google Scholar 

  111. Kim J, Kim SW, Kim WJ (2011) PEI-g-PEG-RGD/small interference RNA polyplex-mediated silencing of vascular endothelial growth factor receptor and its potential as an anti-angiogenic tumor therapeutic strategy. Oligonucleotides 21(2):101–107. doi:10.1089/oli.2011.0278

    Article  PubMed  CAS  Google Scholar 

  112. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12(17):5018–5022. doi:10.1158/1078-0432.CCR-06-1520

    Article  PubMed  CAS  Google Scholar 

  113. Lamagna C, Aurrand-Lions M, Imhof BA (2006) Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80(4):705–713. doi:10.1189/jlb.1105656

    Article  PubMed  CAS  Google Scholar 

  114. Miselis NR, Wu ZJ, Van Rooijen N, Kane AB (2008) Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 7(4):788–799. doi:10.1158/1535-7163.MCT-07-0579

    Article  PubMed  CAS  Google Scholar 

  115. Polverini PJ, Cotran PS, Gimbrone MA Jr, Unanue ER (1977) Activated macrophages induce vascular proliferation. Nature 269(5631):804–806

    Article  PubMed  CAS  Google Scholar 

  116. Wang B, Li Q, Qin L, Zhao S, Wang J, Chen X (2011) Transition of tumor-associated macrophages from MHC class II(hi) to MHC class II(low) mediates tumor progression in mice. BMC Immunol 12:43. doi:10.1186/1471-2172-12-43

    Article  PubMed  CAS  Google Scholar 

  117. Lee CC, Liu KJ, Wu YC, Lin SJ, Chang CC, Huang TS (2011) Sesamin inhibits macrophage-induced vascular endothelial growth factor and matrix metalloproteinase-9 expression and proangiogenic activity in breast cancer cells. Inflammation 34(3):209–221. doi:10.1007/s10753-010-9226-z

    Article  PubMed  CAS  Google Scholar 

  118. Melancon MP, Lu W, Huang Q, Thapa P, Zhou D, Ng C, Li C (2010) Targeted imaging of tumor-associated M2 macrophages using a macromolecular contrast agent PG-Gd-NIR813. Biomaterials 31(25):6567–6573. doi:10.1016/j.biomaterials.2010.05.001

    Article  PubMed  CAS  Google Scholar 

  119. Banciu M, Schiffelers RM, Storm G (2008) Investigation into the role of tumor-associated macrophages in the antitumor activity of Doxil. Pharm Res 25(8):1948–1955. doi:10.1007/s11095-008-9629-9

    Article  PubMed  CAS  Google Scholar 

  120. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A, Allavena P (2010) Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol 185(1):642–652. doi:10.4049/jimmunol.1000413

    Article  PubMed  CAS  Google Scholar 

  121. Li P, Liu D, Sun X, Liu C, Liu Y, Zhang N (2011) A novel cationic liposome formulation for efficient gene delivery via a pulmonary route. Nanotechnology 22(24):245104. doi:10.1088/0957-4484/22/24/245104

    Article  PubMed  CAS  Google Scholar 

  122. Yu W, Liu C, Liu Y, Zhang N, Xu W (2010) Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm Res 27(8):1584–1596. doi:10.1007/s11095-010-0149-z

    Article  PubMed  CAS  Google Scholar 

  123. Huang Z, Zhang Z, Jiang Y, Zhang D, Chen J, Dong L, Zhang J (2012) Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release 158(2):286–292. doi:10.1016/j.jconrel.2011.11.013

    Article  PubMed  CAS  Google Scholar 

  124. Saltz L, Badarinath S, Dakhil S, Bienvenu B, Harker WG, Birchfield G, Tokaz LK, Barrera D, Conkling PR, O’Rourke MA, Richards DA, Reidy D, Solit D, Vakiani E, Capanu M, Scales A, Zhan F, Boehm KA, Asmar L, Cohn A (2011) Phase III trial of cetuximab, bevacizumab, and 5-fluorouracil/leucovorin vs. FOLFOX-bevacizumab in colorectal cancer. Clin Colorectal Cancer. doi:10.1016/j.clcc.2011.05.006

    PubMed  Google Scholar 

  125. Brufsky AM, Hurvitz S, Perez E, Swamy R, Valero V, O’Neill V, Rugo HS (2011) RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 29(32):4286–4293. doi:10.1200/JCO.2010.34.1255

    Article  PubMed  CAS  Google Scholar 

  126. Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, Lim HY, Yamada Y, Wu J, Langer B, Starnawski M, Kang YK (2011) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 29(30):3968–3976. doi:10.1200/JCO.2011.36.2236

    Article  PubMed  CAS  Google Scholar 

  127. Cohn AL, Shumaker GC, Khandelwal P, Smith DA, Neubauer MA, Mehta N, Richards D, Watkins DL, Zhang K, Yassine MR (2011) An open-label, single-arm, phase 2 trial of panitumumab plus FOLFIRI as second-line therapy in patients with metastatic colorectal cancer. Clin Colorectal Cancer 10(3):171–177. doi:10.1016/j.clcc.2011.03.022

    Article  PubMed  CAS  Google Scholar 

  128. Patel RD, Momi RS, Hariprasad SM (2011) Review of ranibizumab trials for neovascular age-related macular degeneration. Semin Ophthalmol 26(6):372–379. doi:10.3109/08820538.2011.570845

    Article  PubMed  Google Scholar 

  129. Campa C, Harding SP (2011) Anti-VEGF compounds in the treatment of neovascular age related macular degeneration. Curr Drug Targets 12(2):173–181

    Article  PubMed  CAS  Google Scholar 

  130. Kessler T, Bayer M, Schwoppe C, Liersch R, Mesters RM, Berdel WE (2010) Compounds in clinical Phase III and beyond. Recent Results Cancer Res 180:137–163. doi:10.1007/978-3-540-78281-0_9

    Article  PubMed  CAS  Google Scholar 

  131. Wong H, Tang YF, Yao TJ, Chiu J, Leung R, Chan P, Cheung TT, Chan AC, Pang RW, Poon R, Fan ST, Yau T (2011) The outcomes and safety of single-agent sorafenib in the treatment of elderly patients with advanced hepatocellular carcinoma (HCC). Oncologist 16(12):1721–1728. doi:10.1634/theoncologist.2011-0192

    Article  PubMed  CAS  Google Scholar 

  132. Procopio G (2011) Role of sorafenib in renal cell carcinoma: focus on elderly patients. Expert Rev Anticancer Ther 11(11):1689–1692. doi:10.1586/era.11.153

    Article  PubMed  CAS  Google Scholar 

  133. Barrios CH, Hernandez-Barajas D, Brown MP, Lee SH, Fein L, Liu JH, Hariharan S, Martell BA, Yuan J, Bello A, Wang Z, Mundayat R, Rha SY (2012) Phase II trial of continuous once-daily dosing of sunitinib as first-line treatment in patients with metastatic renal cell carcinoma. Cancer 118(5):1252–1259. doi:10.1002/cncr.26440

    Article  PubMed  CAS  Google Scholar 

  134. Koh Y, Lee HE, Im SA, Kim SH, Kim TM, Han SW, Oh DY, Kim JH, Lee SH, Kim DW, Kim TY, Kim WH, Heo DS, Bang YJ (2011) VEGF expression is related to good response and long progression-free survival in gastrointestinal stromal tumor patients treated with Sunitinib. Diagn Mol Pathol 20(3):143–147. doi:10.1097/PDM.0b013e3182107ea0

    Article  PubMed  CAS  Google Scholar 

  135. Sahebi F, Frankel PH, Farol L, Krishnan AY, Cai JL, Somlo G, Thomas SH, Reburiano E, Popplewell LL, Parker PM, Spielberger RT, Kogut NM, Karanes C, Htut M, Ruel C, Duarte L, Murata-Collins JL, Forman SJ (2012) Sequential bortezomib, dexamethasone, and thalidomide maintenance therapy after single autologous peripheral stem cell transplantation in patients with multiple myeloma. Biol Blood Marrow Transplant 18(3):486–492. doi:10.1016/j.bbmt.2011.12.580

    Article  PubMed  CAS  Google Scholar 

  136. Cornelison AM, Welch MA, Koller C, Jabbour E (2011) Dasatinib combined with interferon-alfa induces a complete cytogenetic response and major molecular response in a patient with chronic myelogenous leukemia harboring the T315I BCR-ABL1 mutation. Clin Lymphoma Myeloma Leuk 11(Suppl 1):S111–S113. doi:10.1016/j.clml.2011.03.032

    Article  PubMed  Google Scholar 

  137. Foa R, Vitale A, Vignetti M, Meloni G, Guarini A, De Propris MS, Elia L, Paoloni F, Fazi P, Cimino G, Nobile F, Ferrara F, Castagnola C, Sica S, Leoni P, Zuffa E, Fozza C, Luppi M, Candoni A, Iacobucci I, Soverini S, Mandelli F, Martinelli G, Baccarani M (2011) Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 118(25):6521–6528. doi:10.1182/blood-2011-05-351403

    Article  PubMed  CAS  Google Scholar 

  138. Rugo HS, Jo Chien A, Franco SX, Stopeck AT, Glencer A, Lahiri S, Arbushites MC, Scott J, Park JW, Hudis C, Nulsen B, Dickler MN (2011) A phase II study of lapatinib and bevacizumab as treatment for HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-011-1918-z

    Google Scholar 

  139. Gabr AG, Goto H, Hanibuchi M, Ogawa H, Kuramoto T, Suzuki M, Saijo A, Kakiuchi S, Trung VT, Sakaguchi S, Moriya Y, Sone S, Nishioka Y (2012) Erlotinib prevents experimental metastases of human small cell lung cancer cells with no epidermal growth factor receptor expression. Clin Exp Metastasis 29(3):207–216. doi:10.1007/s10585-011-9443-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (No. 81072585), the Shandong Province Natural Science Foundation (No. ZR2009CM011), the Graduate Independent Innovation Foundation of Shandong University (No. 21310070613252).

Conflict of interest

The authors have no potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Zhang, N. Emerging biotechnological strategies for non-viral antiangiogenic gene therapy. Angiogenesis 15, 521–542 (2012). https://doi.org/10.1007/s10456-012-9295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9295-8

Keywords

Navigation