Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors

Abstract

This study examined the potential of engineered gelatin-based nanoparticulate vectors for systemic delivery of therapeutic genes to human solid tumor xenografts in vivo. Plasmid DNA encoding for the soluble form of the extracellular domain of vascular endothelial growth factor receptor-1 (VEGF-R1 or sFlt-1) was encapsulated in the control and poly(ethylene glycol) (PEG)-modified gelatin-based nanoparticles. When the plasmid DNA was delivered in PEG-modified thiolated gelatin nanoparticles, highest levels of sFlt-1 expression was observed in vitro in MDA-MB-435 human breast adenocarcinoma cell line. In addition, upon intravenous administration in female Nu/Nu mice bearing orthotopic MDA-MB-435 breast adenocarcinoma xenografts, efficient in vivo expression of sFlt-1 plasmid DNA was confirmed quantitatively by enzyme-linked immunosorbent assay and qualitatively by Western blot analysis. The expressed sFlt-1 was therapeutically active as shown by suppression of tumor growth and microvessel density measurements. The results of this study show that PEG-modified gelatin-based nanovectors can serve as a safe and effective systemically administered gene delivery vehicle for solid tumor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Huber BE . Gene therapy strategies for treating neoplastic diseases. Ann NY Acad Sci 1994; 716: 6–11.

    Article  CAS  PubMed  Google Scholar 

  2. Crystal RG . Transfer of genes to humans: early lessons and obstacles to success. Science 1995; 270: 404–410.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  PubMed  Google Scholar 

  4. Kerbel R, Folkman J . Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002; 2: 727–739.

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara N, Houck K, Jakeman L, Leung DW . Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 1992; 13: 18–32.

    Article  CAS  PubMed  Google Scholar 

  6. Shibuya M . Role of VEGF-flt receptor system in normal and tumor angiogenesis. Adv Cancer Res 1995; 67: 281–316.

    Article  CAS  PubMed  Google Scholar 

  7. Kuo CJ, Farnebo EY, Christofferson R, Swearingen RA, Carter R, von Recum HA et al. Comparative evaluation of the antitumor activity of antiangiogenic protein delivered by gene transfer. Proc Natl Acad Sci USA 2001; 98: 4605–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas KA . Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem 1996; 271: 603–606.

    Article  CAS  PubMed  Google Scholar 

  9. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A . Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576–579.

    Article  CAS  PubMed  Google Scholar 

  10. Kendall RL, Thomas KA . Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993; 90: 10705–10709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kendall RL, Wang G, Thomas KA . Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996; 226: 324–328.

    Article  CAS  PubMed  Google Scholar 

  12. Hoshida T, Sunamura M, Duda DG, Egawa S, Miyazaki S, Shineha R et al. Gene therapy for pancreatic cancer using an adenovirus vector encoding soluble flt-1 vascular endothelial growth factor receptor. Pancreas 2002; 25: 111–121.

    Article  PubMed  Google Scholar 

  13. Kong HL, Hecht D, Song W, Kovesdi I, Hackett NR, Yayon A et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Hum Gene Ther 1998; 9: 823–833.

    Article  CAS  PubMed  Google Scholar 

  14. Kaliberov SA, Kaliberova LN, Stockard CR, Grizzle WE, Buchsbaum DJ . Adenovirus-mediated FLT1-targeted proapoptotic gene therapy of human prostate cancer. Mol Ther 2004; 10: 1059–1070.

    Article  CAS  PubMed  Google Scholar 

  15. Mahendra G, Kumar S, Isayeva T, Mahasreshti PJ, Curiel DT, Stockardt CR et al. Antiangiogenic cancer gene therapy by adeno-associated virus 2-mediated stable expression of the soluble FMS-like tyrosine kinase-1 receptor. Cancer Gene Ther 2005; 12: 26–34.

    Article  CAS  PubMed  Google Scholar 

  16. Lehrman S . Virus treatment questioned after gene therapy death. Nature 1999; 401: 517–518.

    Article  CAS  PubMed  Google Scholar 

  17. Blessing T, Remy JS, Behr JP . Monomolecular collapse of plasmid DNA into stable virus-like particles. Proc Natl Acad Sci USA 1998; 95: 1427–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaul G, Amiji M . Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res 2005; 22: 951–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaul G, Amiji M . Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 2002; 19: 1062–1068.

    Article  Google Scholar 

  20. Kommareddy S, Shenoy DB, Amiji M . Nanoparticulate carriers of gelatin and gelatin derivatives. In: Kumar C (ed). Biological and Pharmaceutical Nanomaterials. vol 2. Wiley-VCH: Germany, 2005: 330–347.

    Google Scholar 

  21. Schafer FQ, Buettner GR . Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30: 1191–1212.

    Article  CAS  PubMed  Google Scholar 

  22. Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H et al. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J Am Chem Soc 2004; 126: 2355–2361.

    Article  CAS  PubMed  Google Scholar 

  23. Kommareddy S, Amiji M . Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug Chem 2005; 16: 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  24. Maeda H . SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001; 46: 169–185.

    Article  CAS  PubMed  Google Scholar 

  25. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK . Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 1994; 54: 3352–3356.

    CAS  PubMed  Google Scholar 

  26. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK . Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 1994; 54: 4564–4568.

    CAS  PubMed  Google Scholar 

  27. Jain RK . Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990; 50 (Suppl 3): 814s–819s.

    CAS  PubMed  Google Scholar 

  28. Jang SH, Wientjes MG, Lu D, Au JL . Drug delivery and transport to solid tumors. Pharm Res 2003; 20: 1337–1350.

    Article  CAS  PubMed  Google Scholar 

  29. Kommareddy S, Amiji M . Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J Pharm Sci 2007; 96: 397–407.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Q, Ishibashi M, Hiasa K, Tan C, Takeshita A, Egashira K . Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension 2004; 44: 264–270.

    Article  CAS  PubMed  Google Scholar 

  31. Snyder SL, Sobocinski PZ . An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem 1975; 64: 284–288.

    Article  CAS  PubMed  Google Scholar 

  32. Sherwood MA . Data analysis in X-ray photoelectron spectroscopy. In: Briggs D, Seah MP (eds). Practical Surface Analysis, vol 2. John Wiley and Sons: New York, 1990 pp 555–586.

    Google Scholar 

  33. Fenton BM, Paoni SF, Lee J, Koch CJ, Lord EM . Quantification of tumour vasculature and hypoxia by immunohistochemical staining and HbO2 saturation measurements. Br J Cancer 1999; 79: 464–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liaudet-Coopman ED, Berchem GJ, Wellstein A . In vivo inhibition of angiogenesis and induction of apoptosis by retinoic acid in squamous cell carcinoma. Clin Cancer Res 1997; 3: 179–184.

    CAS  PubMed  Google Scholar 

  35. Kaul G, Amiji M . Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles. J Pharm Sci 2004; 94: 184–198.

    Article  Google Scholar 

  36. Kommareddy S, Shenoy DB, Amiji M . Gelatin nanoparticles and their biofunctionalization. In: Kumar C (ed). Biological and Pharmaceutical Nanomaterials, vol 1. Wiley-VCH: Germany, 2005: 330–348.

    Google Scholar 

  37. Shenoy DB, Amiji MM . Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005; 293: 261–270.

    Article  CAS  PubMed  Google Scholar 

  38. Marshall E . Gene therapy. Second child in French trial is found to have leukemia. Science 2003; 299: 320.

    Article  CAS  PubMed  Google Scholar 

  39. Kaul G, Amiji M . Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target 2004; 12: 585–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pedroso de Lima MC, Simoes S, Pires P, Faneca H, Duzgunes N . Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 2001; 47: 277–294.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant R01-CA095522 from the National Cancer Institute of the National Institutes of Health (NIH). We thank Professor Kensuke Egashira of Kyushu University (Fukuoka, Japan) for providing us with the sample of human sFlt-1 expressing plasmid. Additionally, Dr Lara Gamble's help with the ESCA investigations at the NESAC/BIO (Seattle, WA) is gratefully acknowledged. NESAC/BIO is supported by the National Institutes of Health grant EB-002027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kommareddy, S., Amiji, M. Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther 14, 488–498 (2007). https://doi.org/10.1038/sj.cgt.7701041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701041

Keywords

This article is cited by

Search

Quick links