Skip to main content

Advertisement

Log in

Erlotinib prevents experimental metastases of human small cell lung cancer cells with no epidermal growth factor receptor expression

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR–TKIs) show dramatic antitumor activity in a subset of patients with non-small cell lung cancer who have an active mutation in the epidermal growth factor receptor (EGFR) gene. On the other hand, some lung cancer patients with wild type EGFR also respond to EGFR–TKIs, suggesting that EGFR–TKIs have an effect on host cells as well as tumor cells. However, the effect of EGFR–TKIs on host microenvironments is largely unknown. A multiple organ metastasis model was previously established in natural killer cell-depleted severe combined immunodeficient mice using human lung cancer cells. This model was used to investigate the therapeutic efficacy of erlotinib, an EGFR–TKI, on multiple organ metastases induced by human small cell lung cancer cells (SBC-5 cells) that did not express EGFR. Although erlotinib did not have any effect on the proliferation of SBC-5 cells in vitro, it significantly suppressed bone and lung metastases in vivo, but not liver metastases. An immunohistochemical analysis revealed that, erlotinib significantly suppressed the number of osteoclasts in bone metastases, whereas no difference was seen in microvessel density. Moreover, erlotinib inhibited EGF-induced receptor activator of nuclear factor kappa-B expression in an osteoblastic cell line (MC3T3-E1 cells). These results strongly suggested that erlotinib prevented bone metastases by affecting host microenvironments irrespective of its direct effect on tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EGFR–TKI:

Epidermal growth factor receptor–tyrosine kinase inhibitor

NSCLC:

Non-small cell lung cancer

NK:

Natural killer

SCID:

Severe combined immunodeficient

SCLC:

Small cell lung cancer

PTHrP:

Parathyroid hormone-related protein

EGFR:

Epidermal growth factor receptor

HUVECs:

Human umbilical vein endothelial cells

IL:

Interleukin

Ab:

Antibody

VEGF:

Vascular endothelial growth factor

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

BMMSCs:

Bone marrow mesenchymal stem cells

HGF:

Hepatocyte growth factor

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Sone S, Yano S (2007) Molecular pathogenesis and its therapeutic modalities of lung cancer metastasis to bone. Cancer Metastasis Rev 26:685–689

    Article  PubMed  CAS  Google Scholar 

  3. Jackman DM, Yeap BY, Sequist LV, Lindeman N, Holmes AJ, Joshi VA, Bell DW, Huberman MS, Halmos B, Rabin MS, Haber DA, Lynch TJ et al (2006) Exon 19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefitinib or erlotinib. Clin Cancer Res 12:3908–3914

    Article  PubMed  CAS  Google Scholar 

  4. Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES, Zakowski MF, Kris MG, Ladanyi M, Miller VA (2006) Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 12:839–844

    Article  PubMed  CAS  Google Scholar 

  5. Mitsudomi T, Yatabe Y (2007) Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 98:1817–1824

    Article  PubMed  CAS  Google Scholar 

  6. Normanno N, De Luca A, Aldinucci D, Maiello MR, Mancino M, D’Antonio A, De Filippi R, Pinto A (2005) Gefitinib inhibits the ability of human bone marrow stromal cells to induce osteoclast differentiation: implications for the pathogenesis and treatment of bone metastasis. Endocr Relat Cancer 12:471–482

    Article  PubMed  CAS  Google Scholar 

  7. Cerniglia GJ, Pore N, Tsai JH, Schultz S, Mick R, Choe R, Xing X, Durduran T, Yodh AG, Evans SM, Koch CJ, Hahn SM, Quon H, Sehgal CM, Lee WM, Maity A (2009) Epidermal growth factor receptor inhibition modulates the microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy. PLoS ONE 4:6539–6549

    Article  Google Scholar 

  8. Yano S, Nishioka Y, Izumi K, Tsuruo T, Tanaka T, Miyasaka M, Sone S (1996) Novel metastasis model of human lung cancer in SCID mice depleted of NK cells. Int J Cancer 67:211–217

    Article  PubMed  CAS  Google Scholar 

  9. Miki T, Yano S, Hanibuchi M, Sone S (2000) Bone metastasis model with multiorgan dissemination of human small-cell lung cancer (SBC-5) cells in natural killer cell-depleted SCID mice. Oncol Res 12:209–217

    PubMed  CAS  Google Scholar 

  10. Miki T, Yano S, Hanibuchi M, Kanematsu T, Muguruma H, Sone S (2004) Parathyroid hormone-related protein (PTHrP) is responsible for production of bone metastasis, but not visceral metastasis, by human small cell lung cancer SBC-5 cells in natural killer cell-depleted SCID mice. Int J Cancer 108:511–515

    Article  PubMed  CAS  Google Scholar 

  11. Yano S, Zhang H, Hanibuchi M, Miki T, Goto H, Uehara H, Sone S (2003) Combined therapy with a new bisphosphonate, minodronate (YM529), and chemotherapy for multiple organ metastases of small cell lung cancer cells in severe combined immunodeficient mice. Clin Cancer Res 9:5380–5385

    PubMed  CAS  Google Scholar 

  12. Yano S, Muguruma H, Matsumori Y, Goto H, Nakataki E, Edakuni N, Tomimoto H, Kakiuchi S, Yamamoto A, Uehara H, Ryan A, Sone S (2005) Antitumor vascular strategy for controlling experimental metastatic spread of human small cell lung cancer cells with ZD6474 in natural killer cell-depleted severe combined immunodeficiency mice. Clin Cancer Res 11:8789–8798

    Article  PubMed  CAS  Google Scholar 

  13. Yano S, Nishioka Y, Nokihara H, Sone S (1997) Macrophage colony-stimulating factor gene transduction into human lung cancer cells differentially regulates metastasis formations in various organ microenvironments of natural killer cell-depleted SCID mice. Cancer Res 57:784–790

    PubMed  CAS  Google Scholar 

  14. Otsuka S, Hanibuchi M, Ikuta K, Yano S, Goto H, Ogino H, Yamada T, Kakiuchi S, Nishioka Y, Takahashi T, Sone S (2009) A bone metastasis model with osteolytic and osteoblastic properties of human lung cancer ACC-LC-319/bone2 in natural killer cell-depleted severe combined immunodeficient mice. Oncol Res 17:581–591

    Article  PubMed  Google Scholar 

  15. Kiura K, Watarai S, Shibayama T, Ohnoshi T, Kimura I, Yasuda T (1993) Inhibitory effects of cholera toxin on in vitro growth of human lung cancer cell lines. Anticancer Drug Des 8:417–428

    PubMed  CAS  Google Scholar 

  16. Zhu J, Jia X, Xiao G, Kang Y, Partridge NC, Qin L (2007) EGF-like ligands stimulate osteoclastogenesis by regulating expression of osteoclast regulatory factors by osteoblasts: implications for osteolytic bone metastases. J Biol Chem 282:26656–26664

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka T, Kitamura F, Nagasaka Y, Kuida K, Suwa H, Miyasaka M (1993) Selective long-term elimination of natural killer cells in vivo by an anti-interleukin 2 receptor β chain monoclonal antibody in mice. J Exp Med 178:1103–1107

    Article  PubMed  CAS  Google Scholar 

  18. Green LM, Reade JL, Ware CF (1984) Rapid colorimetric assay for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines. J Immunol Methods 70:257–268

    Article  PubMed  CAS  Google Scholar 

  19. van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35:692–706

    Article  PubMed  Google Scholar 

  20. Ogino A, Kitao H, Hirano S, Uchida A, Ishiai M, Kozuki T, Takigawa N, Takata M, Kiura K, Tanimoto M (2007) Emergence of epidermal growth factor receptor T790M mutation during chronic exposure to gefitinib in a non small cell lung cancer cell line. Cancer Res 67:7807–7814

    Article  PubMed  CAS  Google Scholar 

  21. Guillamo JS, Bouard SD, Valable S, Marteau L, Leuraud P, Marie Y, Poupon MF, Parienti JJ, Raymond E, Peschanski M (2009) Molecular mechanisms underlying effects of epidermal growth factor receptor inhibition of invasion, proliferation, and angiogenesis in experimental glioma. Clin Cancer Res 15:3697–3704

    Article  PubMed  CAS  Google Scholar 

  22. Riedel F, Götte K, Li M, Hörmann K, Grandis JR (2002) EGFR antisense treatment of human HNSCC cell lines down-regulates VEGF expression and endothelial cell migration. Int J Oncol 21:11–16

    PubMed  CAS  Google Scholar 

  23. Lipton A, Goessl C (2010) Clinical development of anti-RANKL therapies for treatment and prevention of bone metastasis. Bone 48:96–99

    Article  PubMed  Google Scholar 

  24. Fidler IJ, Kim SJ, Langley RR (2007) The role of the organ microenvironment in the biology and therapy of cancer metastasis. J Cell Biochem 101:927–936

    Article  PubMed  CAS  Google Scholar 

  25. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    Article  PubMed  Google Scholar 

  26. Liotta LA, Kohn EC (2001) The microenvironment of the tumor-host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  27. Langley RR, Fidler IJ (2007) Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28:297–321

    Article  PubMed  CAS  Google Scholar 

  28. Krampera M, Pasini A, Rigo A, Scupoli MT, Tecchio C, Malpeli G, Scarpa A, Dazzi F, Pizzolo G, Vinante F (2005) HB–EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation multilineage differentiation. Blood 106:59–66

    Article  PubMed  CAS  Google Scholar 

  29. Kim SM, Jung JU, Ryu JS, Jin JW, Yang HJ, Ko K, You HK, Jung KY, Choo YK (2008) Effects of gangliosides on the differentiation of human mesenchymal stem cells into osteoblasts by modulating epidermal growth factor receptors. Biochem Biophys Res Commun 371:866–871

    Article  PubMed  CAS  Google Scholar 

  30. Chien HH, Lin WL, Cho MI (2000) Down-regulation of osteoblastic cell differentiation by epidermal growth factor receptor. Calcif Tissue Int 67:141–150

    Article  PubMed  CAS  Google Scholar 

  31. Qin L, Tamasi J, Raggatt L, Li X, Feyen JH, Lee DC, Dicicco-Bloom E, Partridge NC (2005) Amphiregulin is a novel growth factor involved in normal bone development and in the cellular response to parathyroid hormone stimulation. J Biol Chem 280:3974–3981

    Article  PubMed  CAS  Google Scholar 

  32. Schneider MR, Sibilia M, Erben RG (2009) The EGFR network in bone biology and pathology. Trends Endocrinol Metab 20:517–524

    Article  PubMed  CAS  Google Scholar 

  33. Furugaki K, Moriya Y, Iwai T, Yorozu K, Yanagisawa M, Kondoh K, Fujimoto-Ohuchi K, Mori K (2011) Erlotinib inhibits osteolytic bone invasion of human non-small-cell lung cancer cell line NCI-H292. Clin Exp Metastasis 28:649–659

    Article  PubMed  CAS  Google Scholar 

  34. Schwaninger R, Rentsch CA, Wetterwald A, van der Horst G, van Bezooijen RL, van der Pluijm G, Lowik CW, Ackermann K, Pyerin W, Hamdy FC, Thalmann GN, Cecchini MG (2007) Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. Am J Pathol 170:160–175

    Article  PubMed  CAS  Google Scholar 

  35. Wen YH, Koeppen H, Garcia R, Chiriboga L, Tarlow BD, Peters BA, Eigenbrot C, Yee H, Steiner G, Greco MA (2007) Epidermal growth factor receptor in osteosarcoma: expression and mutational analysis. Hum Pathol 38:1184–1191

    Article  PubMed  CAS  Google Scholar 

  36. Dobashi Y, Suzuki S, Sugawara H, Ooi A (2007) Involvement of epidermal growth factor receptor and downstream molecules in bone and soft tissue tumors. Hum Pathol 38:914–925

    Article  PubMed  CAS  Google Scholar 

  37. Di Lorenzo G, Tortora G, D’Armiento FP, De Rosa G, Staibano S, Autorino R, D’Armiento M, De Laurentiis M, De Placido S, Catalano G, Bianco AR, Ciardiello F (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8:3438–3444

    PubMed  CAS  Google Scholar 

  38. Kim SJ, Uehara H, Karashima T, Shepherd DL, Killion JJ, Fidler IJ (2003) Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin Cancer Res 9:1200–1210

    PubMed  CAS  Google Scholar 

  39. Dunsmore SE, Rubin JS, Kovacs SO, Chedid M, Parks WC, Welgus HG (1996) Mechanisms of hepatocyte growth factor stimulation of keratinocyte metalloproteinase production. J Biol Chem 271:24576–24582

    Article  PubMed  CAS  Google Scholar 

  40. Yano S, Wang W, Li Q, Matsumoto K, Sakurama H, Nakamura T, Ogino H, Kakiuchi S, Hanibuchi M, Nishioka Y, Uehara H, Mitsudomi T et al (2008) Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 68:9479–9487

    Article  PubMed  CAS  Google Scholar 

  41. Huang Y, Song N, Yanping Ding Y, Yuan S, Li X, Cai H, Shi H, Luo Y (2009) Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res 69:7529–7537

    Article  PubMed  CAS  Google Scholar 

  42. Baker CH, Keder D, McCarty MF, Tsan R, Weber KL, Bucana CD, Fidler IJ (2002) Blockade of epidermal growth factor receptor signaling on tumor cells and tumor-associated endothelial cells for therapy of human carcinomas. Am J Pathol 161:929–938

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-aid for Cancer Research from the Ministry of Education, Science, Sports and Culture of Japan, and Ministry of Health and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Nishioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabr, A.G.M., Goto, H., Hanibuchi, M. et al. Erlotinib prevents experimental metastases of human small cell lung cancer cells with no epidermal growth factor receptor expression. Clin Exp Metastasis 29, 207–216 (2012). https://doi.org/10.1007/s10585-011-9443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9443-3

Keywords

Navigation