Skip to main content

Additive Manufacturing of Magnesium Alloys and Shape Memory Alloys for Biomedical Applications: Challenges and Opportunities

  • Conference paper
  • First Online:
TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 999 Accesses

Abstract

Magnesium alloys have emerged as a new class of biomaterials due to their unique properties, such as biodegradability, biocompatibility, and high stiffness similar to human bones. Shape memory alloys (SMA) have also become promising biomaterials for use in biomedical applications, including orthopedics, because of their excellent multi-functional properties, fatigue resistance, and biocompatibility. Recently, the ability to produce patient-specific parts with complex geometries and improved multi-functionality has drawn great attention towards additive manufacturing (AM) processes to produce biomedical device components. This paper provides an analysis of the manufacturing conditions for producing magnesium-based and shape memory biomaterials improved by rare-earth elements (REEs) and critical minerals using AM techniques, particularly the laser powder bed fusion (L-PBF) process. Microstructural evolutions, mechanical properties, and corrosion behavior resulting from processing parameters and alloying elements are investigated to recognize the knowledge gaps and recommend future research directions for the development of additively manufactured biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111. https://doi.org/10.1016/j.pmatsci.2017.08.003

    Article  PubMed  Google Scholar 

  2. Sezer N, Evis Z, Koç M (2021) Additive manufacturing of biodegradable magnesium implants and scaffolds: review of the recent advances and research trends. J Magnes Alloy. 9(2):392–415. https://doi.org/10.1016/j.jma.2020.09.014

    Article  Google Scholar 

  3. Sabbaghian M, Mahmudi R, Shin KS. Microstructural evolution, mechanical properties, and biodegradability of a Gd-containing Mg–Zn alloy

    Google Scholar 

  4. Kraus T et al (2018) The influence of biodegradable magnesium implants on the growth plate. Acta Biomater 66:109–117. https://doi.org/10.1016/j.actbio.2017.11.031

    Article  PubMed  Google Scholar 

  5. Sayari F, Mahmudi R, Roumina R (2019) Materials science & engineering a inducing superplasticity in extruded pure Mg by Zr addition. Mater Sci Eng A 769(August 2019):138502 (2020). https://doi.org/10.1016/j.msea.2019.138502

  6. Sabbaghian M, Mahmudi R (2021) Materials characterization superplasticity of the fine-grained friction stir processed Mg–3Gd–1Zn sheets, 172(December 2020):1–10 (2021)

    Google Scholar 

  7. Rezaei A, Mahmudi R, Log RE (2023) Materials science & engineering a microstructural and hardness homogeneity in an Mg–Gd−Y–Ag alloy processed by simple shear extrusion, 876(March 2023)

    Google Scholar 

  8. Tekumalla S, Seetharaman S, Almajid A, Gupta M (2015) Mechanical properties of magnesium-rare earth alloy systems: a review

    Google Scholar 

  9. Azizi N, Mahmudi R (2021) Materials science & engineering a microstructure, texture, and mechanical properties of the extruded and multi-directionally forged Mg–x Gd alloys. Mater Sci Eng A 817(May):141385 (2021). https://doi.org/10.1016/j.msea.2021.141385

  10. Gao L, Chen RS, Han EH (2009) Solid solution strengthening behaviors in binary Mg–Y single phase alloys, 472:234–240 (2009), https://doi.org/10.1016/j.jallcom.2008.04.049

  11. Sandlo S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R (2011) On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys, 59:429–439 (2011). https://doi.org/10.1016/j.actamat.2010.08.031

  12. Hort N et al (2010) Magnesium alloys as implant materials—principles of property design for Mg–RE alloys. Acta Biomater 6(5):1714–1725. https://doi.org/10.1016/j.actbio.2009.09.010

    Article  PubMed  Google Scholar 

  13. Chia TL, Easton MA, Zhu SM, Gibson MA, Birbilis N, Nie JF (2009) The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys. Intermetallics 17(7):481–490. https://doi.org/10.1016/j.intermet.2008.12.009

    Article  Google Scholar 

  14. Sabahi N, Chen W, Wang CH, Kruzic JJ, Li X (2020) A review on additive manufacturing of shape-memory materials for biomedical applications. JOM 72(3):1229–1253. https://doi.org/10.1007/s11837-020-04013-x

    Article  Google Scholar 

  15. Krooß P et al (2022) Additive manufacturing of binary Ni–Ti shape memory alloys using electron beam powder bed fusion: functional reversibility through minor alloy modification and carbide formation. Shape Mem Superelasticity 8(4):452–462. https://doi.org/10.1007/s40830-022-00400-2

    Article  Google Scholar 

  16. Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S (2023) Improving biocompatibility for next generation of metallic implants. Prog Mater Sci 133(September 2022):101053. https://doi.org/10.1016/j.pmatsci.2022.101053

  17. Safavi MS, Bordbar‐Khiabani A, Khalil‐Allafi J, Mozafari M, Visai L (2022) Additive manufacturing: an opportunity for the fabrication of near‐net‐shape NiTi implants. J Manuf Mater Process 6(3). https://doi.org/10.3390/jmmp6030065

  18. Lu B, Cui X, Ma W, Dong M, Fang Y, Wen X (2020) Promoting the heterogeneous nucleation and the functional properties of directed energy deposited NiTi alloy by addition of La2O3. Addit Manuf 33(February):101150. https://doi.org/10.1016/j.addma.2020.101150

  19. Yi X, Shen G, Meng X, Wang H, Gao Z (2021) The higher compressive strength (TiB + La2O3)/Ti–Ni shape memory alloy composite with the larger recoverable strain. Compos Commun 23(November 2020):100583. https://doi.org/10.1016/j.coco.2020.100583

  20. Yan YX, Ahmad T, Zhang X, Liang T, Rehman SU, Manzoor MU, Basit MA et al (2019) Microstructure, hardness and corrosion behavior of Ni-Ti alloy with the addition of rare earth metal oxide (Gd2O3). Mater Res Express 6(7):076513

    Google Scholar 

  21. Ahmadi H, Nouri M (2011) Effects of Yttrium addition on microstructure, hardness and resistance to wear and corrosive wear of TiNi alloy. J Mater Sci Technol 27(9):851–855. https://doi.org/10.1016/S1005-0302(11)60154-0

    Article  Google Scholar 

  22. Yan W et al (2018) Modeling process-structure-property relationships for additive manufacturing. Front Mech Eng 13(4):482–492. https://doi.org/10.1007/s11465-018-0505-y

    Article  Google Scholar 

  23. Bourell D et al (2017) Materials for additive manufacturing. CIRP Ann Manuf Technol 66(2):659–681. https://doi.org/10.1016/j.cirp.2017.05.009

    Article  Google Scholar 

  24. Parshin SG (2021) Thermophysical properties of electric arc plasma and the wire melting effect with lanthanum and sulfur fluorides addition in wire arc additive manufacturing

    Google Scholar 

  25. Niu X, Shen H, Fu J (2018) Microstructure and mechanical properties of selective laser melted Mg-9 wt % Al powder mixture. Mater Lett 221:4–7. https://doi.org/10.1016/j.matlet.2018.03.068

    Article  Google Scholar 

  26. Murtaza S, Nikolaos J, Hiroki K, Claus F, Teiichi R, Yiliang A (2021) Additive manufacturing of magnesium alloy using uniform droplet spraying: modeling of microstructure evolution. MRS Adv 391–403. https://doi.org/10.1557/s43580-021-00028-x

  27. Chang C et al (2023) Achieving ultra-high strength and ductility in Mg–9Al–1Zn–0.5Mn alloy via selective laser melting. Adv Powder Mater 2(2):100097. https://doi.org/10.1016/j.apmate.2022.100097

  28. Guo Y, Quan G, Jiang Y, Ren L, Fan L, Pan H (2021) Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding. J. Magnes Alloy 9(1):192–201. https://doi.org/10.1016/j.jma.2020.01.003

    Article  Google Scholar 

  29. Frequency AP (2016) Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency. https://doi.org/10.3390/ma9100823

  30. Farag MM, Yun H (2014) Effect of gelatin addition on fabrication of magnesium phosphate-based scaffolds prepared by additive manufacturing system. Mater Lett 132:111–115. https://doi.org/10.1016/j.matlet.2014.06.055

    Article  Google Scholar 

  31. Palanivel S, Nelaturu P, Glass B, Mishra RS (2015) Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. J Mater 65:934–952. https://doi.org/10.1016/j.matdes.2014.09.082

    Article  Google Scholar 

  32. Salehi M et al (2019) Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing. Mater Des 169:107683. https://doi.org/10.1016/j.matdes.2019.107683

    Article  Google Scholar 

  33. Salehi M et al (2019) A paradigm shift towards compositionally zero-sum binderless 3D printing of magnesium alloys via capillary-mediated bridging. Acta Mater 165:294–306. https://doi.org/10.1016/j.actamat.2018.11.061

    Article  Google Scholar 

  34. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review, 27:1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

  35. Bär F et al (2019) Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis. Acta Biomaterialia 98:36–49. https://doi.org/10.1016/j.actbio.2019.05.056

  36. Gneiger S, Österreicher JA, Arnoldt AR, Birgmann A, Fehlbier M (2020) Development of a high strength magnesium alloy for wire arc additive manufacturing

    Google Scholar 

  37. Hyer H, Zhou L, Benson G, Mcwilliams B, Cho K, Sohn Y (2020) Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion. Addit Manuf 33(February):101123. https://doi.org/10.1016/j.addma.2020.101123

  38. Elahinia MH, Hashemi M, Tabesh M (2012) Progress in materials science manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57(5):911–946. https://doi.org/10.1016/j.pmatsci.2011.11.001

    Article  Google Scholar 

  39. Ravari MRK, Kadkhodaei M, Ghaei A (2015) A microplane constitutive model for shape memory alloys considering tension—compression asymmetry. Smart Mater Struct 24(7):75016. https://doi.org/10.1088/0964-1726/24/7/075016

    Article  Google Scholar 

  40. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer

    Google Scholar 

  41. Taheri M, Shayesteh N, Haberland C, Dean D, Miller MJ, Elahinia M (2014) Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater 10(10):4058–4070. https://doi.org/10.1016/j.actbio.2014.06.025

    Article  Google Scholar 

  42. Hu D, Kovacevic R (2003) Proc Inst Mech Eng, Part B: J Eng Manuf Model Measur Therm Behav. https://doi.org/10.1243/095440503321628125

  43. Song B et al (2015) Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review, 10(2):111–125. https://doi.org/10.1007/s11465-015-0341-2

  44. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) Progress in materials science a review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. J Prog Mater Sci 74:401–477. https://doi.org/10.1016/j.pmatsci.2015.03.002

    Article  Google Scholar 

  45. Elahinia M, Shayesteh N, Taheri M, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Progress in materials science fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663. https://doi.org/10.1016/j.pmatsci.2016.08.001

    Article  Google Scholar 

  46. Haberland C, Elahinia M, Walker JM. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing, 104002. https://doi.org/10.1088/0964-1726/23/10/104002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sayari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sayari, F., Yakout, M. (2024). Additive Manufacturing of Magnesium Alloys and Shape Memory Alloys for Biomedical Applications: Challenges and Opportunities. In: TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50349-8_8

Download citation

Publish with us

Policies and ethics