Skip to main content
Log in

Additive manufacturing of magnesium alloy using uniform droplet spraying: modeling of microstructure evolution

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In this study a material model is developed to predict the solidification microstructure of an additive-manufactured, fully dense magnesium (Mg) alloy using uniform droplet spraying (UDS). Specifically, the crystallite size distribution is simulated by a solidification model, consisting of a nucleation/fragmentation and a constrained growth description, calibrated via microstructural data from a single droplet splat. This is enabled by a semi-analytical thermal modeling framework, based on the superposition of moving Green’s and Rosenthal functions for the temperature field generated by a Gaussian source distribution. The model is implemented for layered ellipsoidal deposit sections on planar substrates by multi-pass spraying, and its predictions are validated against measured crystal sizes by image analysis of experimental micrographs of a Mg97ZnY2 alloy, to an error margin of ± 15%. The computationally efficient simulation provides insights to the deposit microstructure, and is intended as a process observer in a closed-loop, adaptive control scheme based on infrared temperature measurements.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author YL at leonl@iastate.edu.

Abbreviations

T :

Temperature field

v :

Average volume of a solidified domain

\(\vec{q}\) :

Heat flux

Δh :

Volumetric latent heat of fusion

\(\varrho\) :

Density

k :

Conductivity

\(\alpha\) :

Thermal diffusivity of solidifying material

c p :

Specific heat capacity

T m :

Solidification temperature

T a :

Ambient temperature

h a :

Convective heat transfer coefficient

ε :

Surface emissivity

σ :

Stefan–Boltzmann constant

T s :

Deposit temperature

ρ :

Distance of location from that of droplet impingement

Q :

Enthalpic content of a molten droplet

ς :

Standard deviation radius

\(\dot{Q}\) :

Total thermal power

F :

Piezoelectric UDS droplet ejection frequency

r, φ :

The radial and azimuthal angle variables of integration location

υ :

Moving speed

s :

Domain size

η i :

Source modulation efficiency

N :

Cumulative fraction of droplets falling the molten puddle

Da j, Db j :

Major thickness and width increments

n :

Aspect ratio

T o :

Initial temperature

Γ :

Green’s function

References

  1. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing (Springer, New York, 2015)

    Book  Google Scholar 

  2. T. Mukherjee, J.S. Zuback, A. De, T. Debroy, Printability of alloys for additive manufacturing. Sci. Rep. 6, 19717 (2016)

    Article  CAS  Google Scholar 

  3. T. Pereira, J.V. Kennedy, J. Potgieter, A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manuf. 30, 11–18 (2019)

    Article  Google Scholar 

  4. M.P. Behera, T. Dougherty, S. Singamneni, Conventional and additive manufacturing with metal matrix composites: a perspective. Procedia Manuf. 30, 159–166 (2019)

    Article  Google Scholar 

  5. D. Martinez-Marquez, A. Mirnajafizadeh, C.P. Carty, R.A. Stewart, Facilitating industry translation of custom 3D printed bone prostheses and scaffolds through quality by design. Procedia Manuf. 30, 284–291 (2019)

    Article  Google Scholar 

  6. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure and properties. Prog. Mater Sci. 74, 401–477 (2015)

    Article  CAS  Google Scholar 

  7. S. Yadav, C. Doumanidis, Thermomechanical analysis of an ultrasonic rapid manufacturing (URM) system. J. Manuf. Process. 7(2), 153–161 (2005)

    Article  Google Scholar 

  8. Y.A. Song, S. Park, S.W. Chae, 3D welding and milling: part II—optimization of the 3D welding process using an experimental design approach. Int. J. Mach. Tools Manuf 45(9), 1063–1069 (2005)

    Article  Google Scholar 

  9. F.H. Froes, Y.W. Kim, S. Krishnamurthy, Rapid solidification of lightweight metal alloys. Mater. Sci. Eng., A 117, 19–32 (1989)

    Article  Google Scholar 

  10. T.S. Srivatsan, T.S. Sudarshan, Rapid Solidification Technology: An Engineering Guide (CRC Press, Boca raton, 1993)

    Google Scholar 

  11. T. Ando, J.-H. Chun, C. Blue, Uniform droplets benefit advanced particulates. Met. Powder Rep. 54(3), 30–34 (1999)

    Article  Google Scholar 

  12. Q. Liu, C. Huang, M. Orme, Mutual electrostatic interactions between closely spaced charged solder droplets. Atom. Sprays 10(6), 565–585 (2000)

    Google Scholar 

  13. C.H. Passow, J.H. Chun, T. Ando, Spray deposition of a Sn-40 Wt Pct Pb alloy with uniform droplets. Metall. Trans. A 24A(5), 1187–1193 (1993)

    Article  CAS  Google Scholar 

  14. M. Nishida, S. Imae, H. Lu, O. Kajita, T. Ando, J.H. Chun, Development and manufacturing of uniform copper spheres by the uniform-droplet spray process. Proceedings of 2000 Powder Metallurgy World Congress, Kyoto, Japan (2000), pp. 390–393

  15. X. Dong, C.D. Tuffile, T. Ando, Continuous-cooling-transformation curves for heterogeneous nucleation on the surface of Sn5 mass% Pb droplets. Adv. Eng. Mater. 2(5), 284–289 (2000)

    Article  CAS  Google Scholar 

  16. H. Fukuda, Droplet-based processing of magnesium alloys for the production of high-performance bulk materials. Ph.D. Thesis, MIE Dept., Northeastern University, Boston (2009)

  17. P. Mathur, D. Apelian, A. Lawley, Analysis of the spray deposition process. Acta Metall. 37(2), 429–443 (1989)

    Article  CAS  Google Scholar 

  18. E. Gutierrez-Miravete, E.J. Lavernia, G.M. Trapaga, J. Szekely, N.J. Grant, A mathematical model of the spray deposition process. Metall. Mater. Trans. A 20, 71–85 (1989)

    Article  Google Scholar 

  19. J. Lipton, W. Kurz, R. Trivedi, Rapid dendrite growth in undercooled alloys. Acta Metall. 35(4), 957–964 (1987)

    Article  CAS  Google Scholar 

  20. A.G. DiVenuti, T. Ando, Free dendritic growth model accommodating curved phase boundaries and high Peclet number conditions. Metall. Mater. Trans. A 29A(12), 3047–3056 (1998)

    Article  CAS  Google Scholar 

  21. M.J. Aziz, Model for solute redistribution during rapid solidification. J. Appl. Phys. 53(2), 1158–1168 (1982)

    Article  CAS  Google Scholar 

  22. Y. Ioannou, H. Fukuda, M. Fyrillas, C. Rebholz, Y. Liao, T. Ando, C.C. Doumanidis, Constrained crystal growth during solidification of particles and splats in uniform droplet sprays. Int. J. Adv. Manuf. Technol. 107, 1205–1221 (2020)

    Article  Google Scholar 

  23. E.M. Padezhnova, EhV Mel’nik, T.V. Dobatkina, Investigation of phase equilibria in the Mg-Y-Zn system. Izvestiya Akademii Nauk SSSR Metally 11(4), 11504832 (1979)

    Google Scholar 

  24. P. Villars, H. Okamoto, K. Cenzual, ASM Alloy Phase Diagrams Center (ASM International, Materials Park, 2007)

    Google Scholar 

  25. M. Yamasaki, Y. Kawamura, Thermal diffusivity and thermal conductivity of Mg-Zn-rare earth element alloys with long period stacking ordered phase. Scripta Mater. 60, 264–267 (2009)

    Article  CAS  Google Scholar 

  26. A. McAndrew, Introduction to Digital Image Processing with MATLAB (Course Technology Press, Boston, 2004)

    Google Scholar 

  27. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford Science Publication, Oxford, 1951)

    Google Scholar 

  28. K.D. Cole, J.V. Beck, A. Haji-Sheikh, B. Litkouhi, Heat Conduction Using Green’s Functions (Taylor & Francis, New Tork, 2010)

    Book  Google Scholar 

  29. D. Rosenthal, Mathematical theory of heat distribution during welding and cutting. Weld. J 20(5), 220–234 (1941)

    Google Scholar 

  30. A.C. Nunes, An extended rosenthal weld model. Weld. Res. Suppl. 165–170 (1983)

  31. T.W. Eagar, N.S. Tsai, Temperature fields produced by traveling distributed heat sources. Weld. Res. Suppl. 346–355 (1983)

  32. M. Aureli, C.C. Doumanidis, I.E. Gunduz, A.G.S. Hussien, Y. Liao, S.M. Jaffar, C. Rebholz, C.C. Doumanidis, Non-equilibrium microscale thermomechanical modeling of bimetallic particulate fractal structures during ball milling fabrication. J. Appl. Phys. 122, 025118 (2017)

    Article  Google Scholar 

  33. J.R. Davis, ASM Specialty Handbook: Stainless Steels (ASM International, Cleveland, 1994)

    Google Scholar 

  34. D.P. DeWitt, G.D. Nutter, Theory and Practice of Radiation Thermometry (Wiley-Interscience, New York, 1988)

    Book  Google Scholar 

  35. E.P. DeGarmo, J.T. Black, R.A. Kohser, Materials and Processes in Manufacturing (Wiley, New York, 2003)

    Google Scholar 

  36. C. Wei, Z. Zhang, D. Cheng, Z. Sun, M. Zhu, L. Li, An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales. Int. J. Extreme Manuf. 3, 012003 (2021)

    Article  Google Scholar 

  37. Z. Zhang, J. Yan, T. Kuriyagawa, Manufacturing technologies toward extreme precision. Int. J. Extreme Manuf. 1, 022001 (2019)

    Article  CAS  Google Scholar 

  38. X. Zhang, C.J. Yocom, B. Mao, Y. Liao, Microstructure evolution during selective laser melting of metallic materials: a review. J. Laser Appl. 31(3), 031201 (2019)

    Article  Google Scholar 

  39. X. Zhang, Y. Liao, A phase-field model for solid-state selective laser sintering of metallic materials. Powder Technol. 339, 677–685 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. Liao gratefully acknowledges the faculty startup support provided by College of Engineering at the Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiliang Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffar, S.M., Kostoglou, N., Fukuda, H. et al. Additive manufacturing of magnesium alloy using uniform droplet spraying: modeling of microstructure evolution. MRS Advances 6, 391–403 (2021). https://doi.org/10.1557/s43580-021-00028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00028-x

Keywords

Navigation