Skip to main content
Log in

Hard and superhard carbon phases synthesized from fullerites under pressure

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

A review has been presented on the structural and mechanical properties of hard carbon phases synthesized from fullerite C60 under pressure. The density and nanostructure have been recognized as the key parameters defining the mechanical properties of hard carbon phases. By suggesting a version of the transitional high-pressure diagram of C60 (developed up to 20 GPa), the three areas of the formation of hard carbon phases have been highlighted. The corresponding phases of superhard carbon are (1) disordered sp2-type atomic structures at moderate pressures and high temperatures (> 1100 K), (2) three-dimensionally polymerized C60 structures at moderate temperatures and high pressures (> 8 GPa), and (3) sp3-based amorphous and nanocomposite phases at high pressures and temperatures. First region can be in turn separated into 2 subparts with different peculiarities of sp2 structures and properties: low pressure part (0.1–2 GPa) and high-pressure part (2–8 GPa). Temperature can be recognized as a factor responsible for the formation of nanostructures by the partial destruction of molecular phases, whereas pressure is a factor responsible for stimulating the formation of rigid polymerized structures consisting of covalently bonded C60 molecules, whereas the combination of both factors leads to the formation of atomic-based phases with dominating sp3 bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harrison, W.A., Electronic Structure and the Properties of Solids, San Francisco: Freeman, 1980.

    Google Scholar 

  2. Krätschmer, W., Lamb, L.D., Fostiropolous, K., and Huffman, D.R., Solid C60: a New Form of Carbon, Nature, 1990, vol. 347, no. 6291, pp. 354–358.

    Article  Google Scholar 

  3. Brazhkin, V.V. and Lyapin, A.G., Transformations of C60 Fullerite under High Pressure-High Temperature Conditions, Physics-Uspekhi, 1996, vol. 39, no. 8, pp. 837–840.

    Article  Google Scholar 

  4. Lyapin, A.G., Mechanical Properties of Polymerized, Amorphous, and Nanocrystalline Carbon Phases Prepared from Fullerite C60 under Pressure, in Perspectives of Fullerene Nanotechnology, Osawa, E. Ed., Dordrecht: Kluwer, 2002, pp. 199–216.

    Chapter  Google Scholar 

  5. Brazhkin, V.V., Lyapin, A.G., Popova, S.V., Bayliss, S.C., Varfolomeeva, T.D., Voloshin, R. N., Gavrilyuk, A.G., Kondrin, M.V., Mukhamad’yarov, V.V., Troyan, I.A., Demishev, S.V., Pronin, A.A., and Sluchanko, N.E., Interplay between the Structure and Properties of New Metastable Carbon Phases Obtained under High Pressures from Fullerite C60 and Carbyne, JETP Letters, 2002, vol. 76, no. 11, pp. 681–692.

    Article  CAS  Google Scholar 

  6. Iwasa, Y., Arima, T., Fleming, R.M., Siegrist, T., Zhou, O., Haddon, R.C., Rothberg, L.J., Lyons, K.B., Carter, H.L., Jr., Hebard, A.F., R. Tycko, R., G. Dabbagh, G., Krajewski, J.J., Thomas, G.A., and Yagi, T., New Phases of C60 Synthesized at High Pressure, Science, 1994, vol. 264, no. 5165, pp. 1570–1572.

    Article  CAS  Google Scholar 

  7. Nunez-Regueiro, M., Marques, L., Hodeau, J.-L., Bethoux, O., and Perroux, M., Polymerized Fullerite Structures, Phys. Rev. Lett., 1995, vol. 74, no. 2, pp. 278–281.

    Article  CAS  Google Scholar 

  8. Marques, L., Hodeau, J.-L., Nunez-Regueiro, M., and Perroux, M., Pressure and Temperature Diagram of Polymerized Fullerite, Phys. Rev. B, 1996, vol. 54, no. 18, pp. R12633–R12636.

    Article  CAS  Google Scholar 

  9. Davydov, V.A., Kashevarova, L.S., Rakhmanina, A.V., Dzyabchenko, A.V., Agafonov, V.N., Dubua, P., Ceolin, R., and Szwarc, H., Identification of the Polymerized Orthorhombic Phase of C60 Fullerene, JETP Lett., 1997, vol. 66, no. 2, pp. 120–125.

    Article  Google Scholar 

  10. Agafonov, V., Davydov, V.A., Kashevarova, L.S., Rakhmanina, A.V., Kahn-Harari, A., Dubois, P., Céolin, R., and Szwarc, H., ’Low-Pressure’ Orthorhombic Phase Formed from Pressure-Treated C60, Chem. Phys. Lett., 1997, vol. 267, nos. 1–2, pp. 193–198.

    Article  CAS  Google Scholar 

  11. Davydov, V.A., Kashevarova, L.S., Rakhmanina, A.V., Agafonov, V., Allouchi, H., Ceolin, R., Dzyabchenko, A.V., Senyavin, V.M., and Szwarc, H., Tetragonal Polymerized Phase of C60, Phys. Rev. B, 1998, vol. 58, no. 22, pp. 14786–14790.

    Article  CAS  Google Scholar 

  12. Davydov, V.A., Kashevarova, L.S., Rakhmanina, A.V., Senyavin, V.M., Céolin, R., Szwarc, H., Allouchi, H., and Agafonov, V., Spectroscopic Study of Pressure-Polymerized Phases of C60, ibid., 2000, vol. 61, no. 18, pp. 11936–11945.

    Article  CAS  Google Scholar 

  13. Bennington, S.M., Kitamura, N., Cain, M.G., Lewis, M.H., Wood, R.A., Fukumi, A.K., and Funakoshi, K., In situ Diffraction Measurement of the Polymerization of C60 at High Temperatures and Pressures, J. Phys.: Condens. Matter., 2000, 12, no. 28, pp. L451–L456.

    Google Scholar 

  14. Wood, R.A., Lewis, M.H., West, G., Bennington, M., Cain, M.G., and Kitamura, N., Transmission Electron Microscopy, Electron Diffraction and Hardness Studies of High-Pressure and High-Temperature Treated C60, ibid., 2000, vol. 12, no. 50, pp. 10411–10421.

    Article  CAS  Google Scholar 

  15. Meletov, K.P., Davydov, V.A., Arvanitidis, J., et al., Photo- and Pressure-Induced Transformations in the Linear Orthorhombic Polymer of C60, JETP, 2008, vol. 107, no. 4, pp. 620–631.

    Article  CAS  Google Scholar 

  16. Meletov, K.P., Kourouklis, G.A., Arvanitidis, J., et al., Pressure-Induced Transformation and Phonon Modes of the Two-Dimensional Rhombohedral Polymer of C60: A Raman Spectroscopic Study, Phys. Rev. B, 2003, vol. 68, no. 9, art. 094103.

  17. Kozlov, M.E., Hirabayashi, M., Nozaki, K., Tokumoto, M., and Ihara, H., Transformation of C60 Fullerenes into a Superhard Form of Carbon at Moderate Pressure, Appl. Phys. Lett., 1995, vol. 66, no. 10, pp. 1199–1201.

    Article  CAS  Google Scholar 

  18. Lyapin, A.G., Brazhkin, V.V., Gromnitskaya, E.L., Popova, S.V., Stal’gorova, O.V., Voloshin R.N., Bayliss, S.C., and Sapelkin, A.V., Hardening of Fullerite C60 during Temperature-Induced Polymerization and Amorphization under Pressure, ibid., 2000, vol. 76, no. 6, pp. 712–714.

    Article  CAS  Google Scholar 

  19. Lasjaunias, J.C., Saint-Paul M., Bilušic, A., Smontara, A., Gradecak, S., Tonejc, A.M., Tonejc, A., and Kitamura, N., Acoustic and Thermal Transport Properties of Hard Carbon Formed from C60 Fullerene, Phys. Rev. B, 2002, vol. 66, no. 1, art. 014302.

  20. Blank, V.D., Denisov, V.N., Ivlev, A.N., Mavrin, B.N., Serebryanaya, N.R., Dubitsky, G.A., Sulyanov, S.N., Popov, M.Yu., Lvova, N.A., Buga, S.G., and Kemkova, G.N., Hard Disordered Phases Produced at High-Pressure-High-Temperature Treatment of C60, Carbon, 1998, vol. 36, no. 9, pp. 1263–1267.

    Article  CAS  Google Scholar 

  21. Brazhkin, V.V., Solozhenko, V.L., Bugakov, V.I., Dub, S.N., Kurakevych, O.O., Kondrin, M.V., and Lyapin A.G., Bulk Nanostructured Carbon Phases Prepared from C60: Approaching the “Ideal” Hardness, J. Phys.: Condens. Matter., 2007, vol. 19, no. 23, art. 236209.

  22. Brazhkin, V.V., Lyapin, A.G., Antonov, Yu.V., Popova, S.V., Klyuev, Yu.A., Naletov, A.M., and Mel’nik, N.N., Amorphization of Fullerite (C60) at High Pressures, JETP Lett., 1995, vol. 62, no. 4, pp. 350–355.

    Google Scholar 

  23. Blank, V.D., Buga, S.G., Serebryanaya, N.R., Denisov, V.N., Dubitsky, G.A., Ivlev, A.N., Mavrin, B.N., and Popov, M.Yu., Ultrahard and Superhard Carbon Phases Produced from C60 by Heating at High Pressure: Structural and Raman Studies, Phys. Lett. A, 1995, 205, nos. 2–3, pp. 208–216.

    Article  CAS  Google Scholar 

  24. Brazhkin, V.V., Lyapin, A.G., and Popova, S.V., Mechanism of Three-Dimensional Polymerization of Fullerite C-60 at High Pressures, JETP Lett., 1996, vol. 64, no. 11, pp. 802–807.

    Article  Google Scholar 

  25. Blank, V.D., Buga, S.G., Serebryanaya, N.R., Dubitsky, G.A., Sulyanov, S.N., Popov, M.Yu., Denisov, V.N., Ivlev, A.N., and Mavrin, B.N., Phase Transformations in Solid C60 at High-Pressure-High-Temperature Treatment and the Structure of 3D Polymerized Fullerites, Phys. Lett. A, 1996, vol. 220, nos. 1–3, pp. 149–157..

    Article  CAS  Google Scholar 

  26. Brazhkin, V.V., Lyapin, A.G., Popova, S.V., Voloshin, R.N., Antonov, Yu.V., Lyapin, S.G., Klyuev, Yu.A., Naletov, A.M., and Mel’nik, N.N., Metastable Crystalline and Amorphous Carbon Phases Obtained from Fullerite C60 by High-Pressure-High-Temperature Treatment, Phys. Rev. B, 1997, vol. 56, no. 18, pp. 11465–11471.

    Article  CAS  Google Scholar 

  27. Lyapin, A.G., Brazhkin, V.V., Lyapin, S.G., and Popova, S.V., Three-Dimensional Polymerization of Fullerite C60under High Pressure, Rev. High Pressure Sci. Technol., 1998, vol. 7, no. 1, pp. 811–813.

    Article  CAS  Google Scholar 

  28. Brazhkin, V.V., Lyapin, A.G., Popova, S.V., Klyuev, Yu.A., and Naletov, A.M., Mechanical Properties of the 3D-Polymerized, sp2-sp3 Amorphous, and Diamond-plus-Graphite Nanocomposite Carbon Phases Prepared from C60 under High Pressure, J. Appl. Phys., 1998, vol. 84, no. 1, pp. 219–226.

    Article  CAS  Google Scholar 

  29. Brazhkin, V.V. and Lyapin, A.G. Comment on “New Metallic Crystalline Carbon: Three Dimensionally Polymerized C60 Fullerite”, Phys. Rev. Lett., 2000, vol. 85, no. 26, pp. 5671–5671.

    Article  CAS  Google Scholar 

  30. Horikawa, T., Suito, K., Kobayashi, M., and Onodera, A., Time-Resolved X-ray Diffraction Study of C60 at High Pressure and Temperature, Phys. Lett. A, 2001, vol. 287, nos. 1–2, pp. 143–151.

    Article  CAS  Google Scholar 

  31. Talyzin, A.V., Dubrovinsky, L.S., Oden, M., Le Bihan, T., and Jansson, U., In situ X-ray Diffraction Study of C60Polymerization at High Pressure and Temperature, Phys. Rev. B, 2002, vol. 66, no. 16, art. 165409.

  32. Wood, R.A., Lewis, M.H., Bennington, S.M., Cain, M.G., Kitamura, N., and Fukumi, A.K., In situ X-Ray Diffraction Studies of Three-Dimensional C60 Polymers, J. Phys.: Condens. Matter., 2002, vol. 14, no. 45, pp. 11615–11621.

    Article  CAS  Google Scholar 

  33. Mezouar, M., Marques, L., Hodeau, J.-L., et al., Equation of State of an Anisotropic Three-Dimensional C60 Polymer: The Most Stable Form of Fullerene, Phys. Rev. B, 2003, vol. 68, no. 19, art. 193414.

  34. Yamanaka, Sh., Kubo, A.K., Inamuru, K., et al., Electron Conductive Three-Dimensional Polymer of Cuboidal C60, Phys. Rev. Lett., 2006, vol. 96, no. 7, art. 076602.

  35. Talyzin, A.V. and Dubrovinsky, L.S., In situ Raman Study of Path-Dependent C60 Polymerization: Isothermal Compression up to 32 GPa at 800 K, Phys. Rev. B, 2003, vol. 68, no. 23, art. 233207.

  36. Talyzin, A.V. and Dubrovinsky, L.S., In situ Raman Study of C60 Polymerization during Isothermal Pressurizing at 800 K, J. Phys.: Condens. Matter., 2004, vol. 16, no. 6, pp. 757–772.

    Article  CAS  Google Scholar 

  37. Talyzin, A.V., Langenhorst, F., Dubrovinskaia, N., et al., Structural Characterization of the Hard Fullerite Phase Obtained at 13 GPa and 830 K, Phys. Rev. B, 2005, vol. 71, no. 11, art. 115424.

  38. Hirai, H., Kondo, K., Yoshizava, N., and Shiraishi, M., Amorphous Diamond from C60 Fullerene, Appl. Phys. Lett., 1994, vol. 64, no. 14, pp. 1797–1799.

    Article  CAS  Google Scholar 

  39. Hirai, H., Tabira, Y., Kondo, K., Oikawa, T., and Ishizawa, N., Radial Distribution Function of a New Form of Amorphous Diamond Shock-Induced from C60 Fullerene, Phys. Rev. B, 1995, vol. 52, no. 9, pp. 6162–6165.

    Article  CAS  Google Scholar 

  40. Brazhkin, V.V., Lyapin, A.G., Voloshin, R.N., Popova, S.V., Kluev, Yu.A., Naletov, A.M., Bayliss, S.C., and Sapelkin, A.V., Mechanism of the Formation of a Diamond Nanocomposite during Transformations of C60 Fullerite at High Pressure, JETP Lett., 1999, vol. 69, no. 11, pp. 869–875.

    Article  CAS  Google Scholar 

  41. Irifune, T., Kurio, A., Sukamoto, Sh., et al., Ultrahard Polycrystalline Diamond from Graphite, Nature, 2003, vol. 421, no. 6923, pp. 599–600.

    Article  CAS  Google Scholar 

  42. Sumiya, H., Yusa, H., Inoue, T., et al., Conditions and Mechanism of Formation of Nano-Polycrystalline Diamonds on Direct Transformation from Graphite and Non-Graphitic Carbon at High Pressure and Temperature, High Press. Res., 2006, vol. 26, no. 2, pp. 63–69.

    Article  CAS  Google Scholar 

  43. Sundqvist B., Fullerenes under High Pressures, Adv. Phys., 1999, vol. 48, no. 1, pp. 1–134.

    Article  CAS  Google Scholar 

  44. Sundqvist B. Buckyballs under Pressure, Phys. Stat. Sol. B, 2001, vol. 223, no. 1, pp. 469–477.

    Article  CAS  Google Scholar 

  45. Makarova, T.L., Electrical and Optical Properties of Pristine and Polymerized Fullerenes, Semiconductors (St. Petersburg), 2001, vol. 35, no. 3, pp. 243–278.

    Article  CAS  Google Scholar 

  46. Sneddon, I.N., Boussinesq’s Problem for a Rigid Cone, Math. Proc. Cambridge Phil. Soc., 1948, vol. 44, no. 4, pp. 492–507; The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile, Int. J. Eng. Sci., 1965, vol. 3, no. 1, pp. 47–57.

    Article  Google Scholar 

  47. Gong, J., Wu, J., and Guang, Z., Examination of the Indentation Size Effect in Low-Load Vickers Hardness Testing of Ceramics, J. Europ. Ceram. Soc., 1999, vol. 19, no. 15, pp. 2625–2631.

    Article  CAS  Google Scholar 

  48. Serebryanaya, N.R., Blank, V.D., Ivdenko, V.A., and Chernozatonskii, L.A., Pressure-Induced Superhard Phase of C60, Solid State Comm., 2001, vol. 118, no. 4, pp. 183–187.

    Article  CAS  Google Scholar 

  49. Lyapin, A.G., Mukhamadiarov, V.V., Brazhkin, V.V., Popova, S.V., Kondrin, M.V., Sadykov, R.A., Tat’yanin, E.V., Bayliss, S.C., and Sapelkin, A.V., Structural and Elastic Anisotropy of Carbon Phases Prepared from Fullerite C60, Appl. Phys. Lett., 2003, vol. 83, no. 19, pp. 3903–3905.

    Article  CAS  Google Scholar 

  50. Brazhkin, V.V., Lyapin, A.G., and Hemley, R.J., Harder than Diamond: Dreams and Reality, Phil. Mag. A, 2002, vol. 82, no. 2, pp. 231–253.

    Article  CAS  Google Scholar 

  51. Thorpe, M.F., Continuous Deformations in Random Networks, J. Non-Cryst. Sol., 1983, vol. 7, no. 3, pp. 355–370.

    Article  Google Scholar 

  52. Kelires, P.C., Intrinsic Stress and Stiffness Variations in Amorphous Carbon, Diamond Relat. Mater., 2001, vol. 10, no. 2, pp. 139–144.

    Article  CAS  Google Scholar 

  53. Tai, W.P. and Watanabe, T., Preparation and Mechanical Properties of Al2O3 Reinforced by Submicrometer Co Particles, J. Mat. Sci., 1998, vol. 33, no. 24, pp. 5795–5801.

    Article  CAS  Google Scholar 

  54. Yip, S., The Strongest Size, Nature, 1998, vol. 391, no. 6667, pp. 532–533.

    Article  CAS  Google Scholar 

  55. Jacobsen, K.W. and Schiotz J., Nanoscale Plasticity, Nature Materials, 2002, vol. 1, no. 1, pp. 15–16.

    Article  CAS  Google Scholar 

  56. Yusa, H., Nanocrystalline Diamond Directly Transformed from Carbon Nanotubes under High Pressure, Diamond Relat. Mater., 2002, vol. 11, no. 1, pp. 87–91.

    Article  CAS  Google Scholar 

  57. Evans, A.R. and Wilshaw, T.R., Quasi-Static Solid Particle Damage in Brittle Solids—I. Observations Analysis and Implications, Acta Metall., 1976, vol. 24, no. 10, pp. 939–956.

    Article  CAS  Google Scholar 

  58. Dworkin, A., Szwarc, H., Davydov, V.A., Kashevarova L.S., Rakhmanina, A.V., Agafonov, V., Ceolin, R., and Allouchi, H., Thermal Studies of C60 Transformed by Temperature and Pressure Treatments, Carbon, 1997, vol. 35, no. 6, pp. 745–747.

    Article  CAS  Google Scholar 

  59. Davydov, V.A., Kashevarova, L.S., Rakhmanina, A.V., Agafonov, V., Allouchi, H., Ceolin, R., Dzyabchenko, A.V., Senyavin, V.M., Szwarc, H., Tanaka, T., and Komatsu, K., Particularities of C60 Transformations at 1.5 GPa, J. Phys. Chem. B, 1999, vol. 103, no. 11, pp. 1800–1804.

    Article  CAS  Google Scholar 

  60. Kondrin, M.N., Lyapin, A.G., Brazhkin, V.V., and Popova S.V., The Influence of Dimerization on the Orientational Phase Transition in the C60 Fullerite, Phys. Solid State (St. Petersburg), 2002, vol. 44, no. 3, pp. 447–449.

    Article  CAS  Google Scholar 

  61. Brazhkin, V.V. and Lyapin, A.G., Hard Carbon Phases Prepared from Fullerite C60 under High Pressure, New Diamond Frontier Carbon Technol., 2004, vol. 14, no. 5, pp. 259–278.

    CAS  Google Scholar 

  62. Sundqvist, B., Comment on “Pressure and Temperature Diagram of Polymerized Fullerite”, Phys. Rev. B, 1998, vol. 57, no. 5, pp. 3164–3165.

    Article  CAS  Google Scholar 

  63. Blank, V.D., Buga, S.G., Dubitsky, G.A., Serebryanaya, N.R., Popov, M.Yu., and Sundqvist, B., High-Pressure Polymerized Phases of C60, Carbon, 1998, vol. 36, no. 4, pp. 319–343.

    Article  CAS  Google Scholar 

  64. Duclos, S.J., Brister, K., Haddon, R.C., Kortan, A.R., and Thie, F.A., Effects of Pressure and Stress on C60 Fullerite to 20 GPa, Nature, 1991, vol. 351, no. 6325, pp. 380–382.

    Article  CAS  Google Scholar 

  65. Nunez-Regueiro, M., Monceau, P., Rassat, A., Bernier, P., and Zahab, A., Absence of a Metallic Phase at High Pressures in C60, ibid., 1991, vol. 354, no. 6351, pp. 289–291.

    Article  CAS  Google Scholar 

  66. Yoo, C.S. and Nellis, W.J., Phase Transformations in Carbon Fullerenes at High Shock Pressures, Science, 1991, vol. 254, no. 5037, pp. 1489–1491.

    Article  CAS  Google Scholar 

  67. Nunez-Regueiro, M., Monceau, P., and Hodeau, J.-L., Crushing C60 to Diamond at Room Temperature, Nature, 1992, vol. 355, no. 6357, pp. 237–239.

    Article  CAS  Google Scholar 

  68. Nunez-Regueiro, M., Abello, L., Lucazeau, G., and Hodeau, J.-L., Diamond from fullerenes: Evidence from Raman Measurements, Phys. Rev. B, 1992, vol. 46, no. 15, pp. 9903–9905.

    Article  Google Scholar 

  69. Snoke, D.W., Raptis, Y.S., and Syassen, K., Vibrational Modes, Optical Excitations, and Phase Transition of Solid C60 at High Pressures, ibid., 1992, vol. 45, no. 24, pp. 14419–14422.

    Article  CAS  Google Scholar 

  70. Moshary, F., Chen, N.H., Silvera, I.F., Brown, C.A., Dorn, H.C., de Vries, M.S., and Bethune, D.S., Gap Reduc tion and the Collapse of Solid C60 to a New Phase of Carbon under Pressure, Phys. Rev. Lett., 1992, vol. 69, no. 3, pp. 466–469.

    Article  CAS  Google Scholar 

  71. Kosowsky, S.D., Hsu, C.-H., Chen, N.H., Moshary, F., Pershan, P.S., and Silvera, I.F., X-Ray Study of Pressure-Collapsed Fullerite, Phys. Rev. B, 1993, vol. 48, no. 11, pp. 8474–8475.

    Article  CAS  Google Scholar 

  72. Yoo, C.S. and Nellis, W.J., Phase Transition from C60 Molecules to Strongly Interacting C60 Agglomerates at Hydrostatic High Pressures, Chem. Phys. Lett., 1992, vol. 198, nos. 3–4, pp. 379–382.

    Article  CAS  Google Scholar 

  73. Hodeau, J.-L., Tonnerre, J.M., Bouchet-Fabre, B., Nunez-Regueiro, M., Capponi, J.J., and Perroux, M., High-Pressure Transformations of C60 to Diamond and sp3 Phases at Room Temperature and to sp2 Phases at High Temperature, Phys. Rev. B, 1994, vol. 50, no. 14, pp. 10311–10314.

    Article  CAS  Google Scholar 

  74. Yoo, C.S., Nellis, W.J., Satler, M.L., and Musket R.G., Diamond-like Metastable Carbon Phases from Shock-Compressed C60 Films, Appl. Phys. Lett., 1992, vol. 61, no. 3, pp. 273–275.

    Article  CAS  Google Scholar 

  75. Matsumuro, A., Takada, Y., Takahashi, Y., Kondo, I., and Senoo, M., Mechanical Properties of C60 Bulk Materials Synthesized at High Pressure, Rev. High Pressure Sci. Technol., 1998, vol. 7, no. 1, pp. 823–825.

    Article  CAS  Google Scholar 

  76. Blank, V.D., Kulnitskiy, B.A., and Tatyanin, Ye.V., Structural Studies of High Pressure Phases of C60, Phys. Lett. A, 1995, vol. 204, no. 2. pp. 151–154.

    Article  CAS  Google Scholar 

  77. Marques, L., Mezouar, M., Hodeau, J.-L., Nunez-Regueiro, M., Serebryanaya, N.R., Ivdenko, V.A., Blank, V.D., and Dubitsky, G.A., “Debye-Scherrer ellipses” from 3D Fullerene Polymers: An Anisotropic Pressure Memory Signature, Science, 1999, vol. 283, no. 5408, pp. 1720–1723.

    Article  CAS  Google Scholar 

  78. Okada, S., Saito, S., and Oshiyama, A., New Metallic Crystalline Carbon: Three Dimensionally Polymerized C60Fullerite, Phys. Rev. Lett., 1999, vol. 83, no. 10, pp. 1986–1989.

    Article  CAS  Google Scholar 

  79. Burgos, E., Halac, E., Weht, R., Bonadeo, H., Artacho, E., and Ordejón, P., New Superhard Phases for Three-Dimensional C60-Based Fullerites, ibid., 2000, vol. 85, no. 11, pp. 2328–2331.

    Article  CAS  Google Scholar 

  80. Perottoni, C.A. and da Jornada, J.A.H., First-Principles Calculation of the Structure and Elastic Properties of a 3D-Polymerized Fullerite, Phys. Rev. B, 2002, vol. 65, no. 22,, art. 224208.

  81. Yamagami, Y. and Saito, S., Polymerized sp2-sp3 Hybrid Metallic Phase of C60 as Obtained via Constant-Pressure Molecular Dynamics, ibid. 2009, vol. 79, no. 4, art. 045425.

  82. Yang, J. and Tse, J.S., First-Principles Investigation on the Geometry and Electronic Structure of the Three-Dimensional Cuboidal C60 Polymer, J. Chem. Phys., 2007, vol. 127, no. 13, art. 134906.

  83. Berber, S., Osawa, E., and Tománek, D., Rigid Crystalline Phases of Polymerized Fullerenes, Phys. Rev. B, 2004, vol. 70, no. 8, art. 085417.

  84. Zipoli, F. and Bernasconi, M., First Principles Study of Three-Dimensional Polymers of C60: Structure, Electronic Properties, and Raman Spectra, ibid., 2008, vol. 77, no. 11, art. 115432.

  85. Talyzin, A.V., Dubrovinsky, L.S., and Jansson, U. In situ Raman Study of C60 Thin Films at High Pressures, ibid., 2001, vol. 64, no. 11, art. 113408.

  86. Ivanovskaya, V.V. and Ivanovskii, A.L., Simulation of Novel Superhard Carbon Materials Based on Fullerenes and Nanotubes, J. Superhard Mater., 2010, vol. 32, no. 2, pp. 67–87.

    Article  Google Scholar 

  87. Chi, D.H., Iwasa, Y., Takano, T., Watanuki, T., Ohishi, Y., and Yamanaka, S., Bond Switching from Two- to Three-Dimensional Polymers of C60 at High Pressure, Phys. Rev. B, 2003, vol. 68, no. 15, art. 153402.

  88. Goze, C., Rachdi, F., Hajji, L., Nunez-Regueiro, M., Marques, L., Hodeau, J-L., and Mehring, M., High Resolution 13C NMR Studies of High-Pressure-Polymerized C60: Evidence for the 2 + 2. Cycloaddition Structure in the disparate Rhombohedral Two-Dimensional C60 Polymer, ibid., 1996, vol. 54, no. 6, pp. R3676–R3678.

    Article  CAS  Google Scholar 

  89. He, H. and Thorpe, M.F., Elastic Properties of Glasses, Phys. Rev. Lett., 1985, vol. 54, no. 19, pp. 2107–2110.

    Article  CAS  Google Scholar 

  90. Blank, V.D., Tatyanin, Ye.V., and Kulnitskiy, B.A., New Structure after Thermobaric Treatment of Solid C60, Phys. Lett. A, 1997, vol. 225, nos. 1–3, pp. 121–126.

    Article  CAS  Google Scholar 

  91. Ferrari, A.C. and Robertson, J., Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Phys. Rev. B, 2000, vol. 61, no. 20, pp. 14095–14107.

    Article  CAS  Google Scholar 

  92. Townsend S.J., Lenosky, T.J., Muller, D.A., Nichols. C.S., and Elser, V., Negatively Curved Graphitic Sheet Model of Amorphous Carbon, Phys. Rev. Lett., 1992, vol. 69, no. 6, pp. 921–924.

    Article  CAS  Google Scholar 

  93. Donadio, D., Colombo, L., and Benedek, G. Elastic Moduli of Nanostructured Carbon Films, Phys. Rev. B, 2004, vol. 70, no. 19, art. 195419.

  94. Alexandrou, I., Scheibe, H.-J., Kiely, C.J., Papworth, A.J., Amaratunga, G.A.J., and Schultrich, B., Carbon Films with a sp2 Network Structure, ibid., 1999, vol. 60, no. 15, pp. 10903–10907.

    Article  CAS  Google Scholar 

  95. Barnett. S. and Madan, A., Superhard Superlattices, Physics World, 1998, vol. 11, no. 1, pp. 45–48.

    CAS  Google Scholar 

  96. Weiler, M., Sattel, S., Giessen, T., Jung, K., Erhardt, H., Veerasamy, V.S., and Robertson, J., Preparation and Properties of Highly Tetrahedral Hydrogenated Amorphous Carbon, Phys. Rev. B, 1996, vol. 53, no. 3, pp. 1594–1608.

    Article  CAS  Google Scholar 

  97. Onodera, A., Irie, Y., Higash, K., Umemura, J., and Takenaka, T., Graphitization of Amorphous Carbon at High Pressures to 15 GPa, J. Appl. Phys., 1991, vol. 69, no. 4, pp. 2611–2617.

    Article  CAS  Google Scholar 

  98. Clerc, D.G. and Ledbetter, H.M., Mechanical Hardness: A Semiempirical Theory Based on Screened Electrostatics and Elastic Shear, J. Phys. Chem. Solids, 1998, vol. 59, nos. 6–7, pp. 1071–1095.

    Article  CAS  Google Scholar 

  99. Teter D.M., Computational Alchemy: The Search for New Superhard Materials, MRS Bulletin, 1998, vol. 23, no. 1, pp. 22–27.

    CAS  Google Scholar 

  100. Blank, V.D., Serebryanaya, N.R., Dubitsky, G.A., and Sulyanov, S.N., Polymerization and Phase Diagram of Solid C-70 after High-Pressure-High-Temperature Treatment, Phys. Lett. A, 1998, vol. 248, nos. 5–6, pp. 415–422.

    Article  CAS  Google Scholar 

  101. Patterson J.R., Catledge S.A., Vohra Y.K., Akella, J., and Weir, S.T., Electrical and Mechanical Properties of C70Fullerene and Graphite under High Pressures Studied Using Designer Diamond Anvils, Phys. Rev. Lett., 2000, vol. 85, no. 25, pp. 5364–5367.

    Article  CAS  Google Scholar 

  102. Brazhkin V.V., Lyapin A.G., Popova, S.V. Antonov, Yu.V., Klyuev, Yu.A., and Naletov, A.M., Mechanical Properties of the Superhard Polymeric and Disordered Phases Prepared from C60, C70, and C2N under High Pressure, Rev. High Pressure Sci. Technol., 1998, vol. 7, no. 1, pp. 989–991.

    Article  CAS  Google Scholar 

  103. Sjöström, H., Stafström S., Boman, M., and Sundgren, J.-E., Superhard and Elastic Carbon Nitride Thin Films Having Fullerene-like Microstructure, Phys. Rev. Lett., 1995, vol. 75, no. 7, pp. 1336–1339.

    Article  Google Scholar 

  104. Brazhkin, V.V., Glazov, A.G., Mukhamadiarov, V.V., Gromnitskaya, E.L., Lyapin, A.G., Popova, S.V., and Stal’go-rova, O.V., Elastic Properties of Carbon Phases Obtained from C60 under Pressure: the First Example of Anisotropic Disordered Carbon Solid, J. Phys.: Condens. Matter., 2002, vol. 14, no. 44, pp. 10911–10915.

    Article  CAS  Google Scholar 

  105. Mukhamadiarov, V.V., Lyapin, A.G., Popova, S.V., Brazhkin, V.V., and Glazov, A.G., Directional Anisotropy in Carbon Phases Prepared from Fullerite C60 under High Pressures, High Press. Res., 2003, vol. 23, no. 3, pp. 275–279.

    Article  CAS  Google Scholar 

  106. Manghnani, M.H., Tkachev, S., Zinin, P.V., Zhang, X., Brazhkin, V.V., Lyapin, A.G., and Trojan, I.A., Elastic Properties of Superhard Amorphous Carbon Pressure-Synthesized from C60 by Surface Brillouin Scattering, Phys. Rev. B, 2001, vol. 64, no. 12, art. 121403(R).

  107. Kelires, P.C., Elastic Properties of Amorphous Carbon Networks, Phys. Rev. Lett., 1994, vol. 73, no. 18, pp. 2460–2463.

    Article  CAS  Google Scholar 

  108. Liu, A.Y., Cohen, M.L., Hass, K.C., and Tamor, M.A., Structural Properties of a Three-Dimensional All-sp2 Phase of Carbon, Phys. Rev. B, 1991, vol. 43, no. 8, pp. 6742–6745.

    Article  CAS  Google Scholar 

  109. Jungnickel, G., Sitch, P.K., Frauenheim, Th., Eggen, B.R., Heggie, M.I., Latham, C.D., and Cousins, C.S.G., Nitrogen Doping in Purely sp2 Bonded Forms of Carbon, ibid., 1998, vol. 57, no. 2, pp. R661–R665.

    Article  CAS  Google Scholar 

  110. Côté, M., Grossman, J.C., Cohen, M.L., and Louie, S.G., Theoretical Study of a Three-Dimensional All-sp2Structure, ibid., 1998, vol. 58, no. 2, pp. 664–668.

    Article  Google Scholar 

  111. Rosato, V., Celino, M., Benedek, G., and Gaito, S., Thermodynamic Behavior of the Carbon Schwarzite fcc (C36)2, ibid., 1999, vol. 60, no. 24, pp. 16928–16933.

    Article  CAS  Google Scholar 

  112. Mailhiot, C. and McMahan, A.K., Atmospheric-Pressure Stability of Energetic Phases of Carbon, ibid., 1991, vol. 44, no. 21, pp. 11578–11591.

    Article  CAS  Google Scholar 

  113. Lyapin, A.G. and Brazhkin, V.V., Correlations between the Physical Properties of the Carbon Phases Obtained at a High Pressure from C60 Fullerite, Phys. Solid State (St. Petersburg), 2002, vol. 44, no. 3, pp. 405–409.

    Article  CAS  Google Scholar 

  114. Meletov, K.P., Kourouklis, G.A., Arvanitidis, J., Prassides, K., and Iwasa, Y., Pressure-Induced Transformation and Phonon Modes of the Two-Dimensional Rhombohedral Polymer of C60: A Raman Spectroscopic Study, Phys. Rev. B, 2003, vol. 68, no. 9, art. 094103.

  115. Marques, L., Mezouar, M., Hodeau, J.-L., and Nunez-Regueiro, M., Imprinting of Anisotropic Stress during C60High-Pressure/High-Temperature Polymerization Process, ibid., 2002, vol. 65, no. 10, art. 100101(R).

  116. Prokhorov, V.M., Blank, V.D., Buga, S.G., and Levin, V.M., Scanning Acoustic Microscopy Study of Superhard C60-Based Polymerized Fullerites, Synthetic Metals, 1999, vol. 103, nos. 1–3, pp. 2439–2442.

    Article  CAS  Google Scholar 

  117. Levin, V.M., Blank, V.D., Prokhorov, V.M. Soifer, Ja.M., and Kobelev, N.P., Elastic Modules of Solid C60: Measurement and Relationship with Nanostructure, J. Phys. Chem. Sol., 2000, vol. 61, no. 7, pp. 1017–1024.

    Article  CAS  Google Scholar 

  118. Tat’yanin, E.V., Lyapin, A.G., Mukhamadiarov, V.V., Brazhkin, V.V., and Vasiliev, A.L., Mechanism of Formation of the Superhard Disordered Graphite-Like Phase from Fullerite C60 under Pressure, J. Phys.: Cond. Mat., 2005, vol. 17, no. 2, pp. 249–256.

    Article  CAS  Google Scholar 

  119. Alvarez-Murga, M., Bleuet, P., Marques, L., Lepoittevin, C., Boudet, N., Gabarino, G., Mezouar, M., and Hodeau, J.-L., Microstructural Mapping of C60 Phase Transformation into Disordered Graphite at High Pressure Using X-ray Diffraction Microtomography, J. Appl. Cryst., 2011, vol. 44, no. 1, pp. 163–171.

    Article  CAS  Google Scholar 

  120. Zhao, Z.S., Zhou, X.-F., Hu, M., Yu, D.L., He, J.L., Wang, H-T., Tian, Y.J., and Xu, B., High-Pressure Behaviors of Carbon Nanotubes, J. Superhard Mater., 2012, vol. 34, no. 6, pp. 371–385.

    Article  Google Scholar 

  121. Boulfelfel, S.E., Zhu, Q., and Oganov, A.R., Novel sp3-Forms of Carbon Predicted by Evolutionary Metadynamics and Analysis of Their Synthesizability Using Transition Path Sampling, ibid., 2012, vol. 34, no. 6, pp. 350–359.

    Article  Google Scholar 

  122. Kurio A., Tanaka Y., Sumiya H., Irifune, T., Shinmei, T., Ohfuji, H., and Kagi, H., Wear Resistance of Nano-Polycrystalline Diamond with Various Hexagonal Diamond Contents, ibid., 2012, vol. 34, no. 6, pp. 343–349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original English Text © V.V. Brazhkin, A.G. Lyapin, 2012, published in Sverkhtverdye Materialy, 2012, Vol. 34, No. 6, pp. 75–105.

About this article

Cite this article

Brazhkin, V.V., Lyapin, A.G. Hard and superhard carbon phases synthesized from fullerites under pressure. J. Superhard Mater. 34, 400–423 (2012). https://doi.org/10.3103/S1063457612060135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457612060135

Keywords

Navigation