Skip to main content
Log in

Novel sp3 forms of carbon predicted by evolutionary metadynamics and analysis of their synthesizability using transition path sampling

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Experiments on cold compression of graphite have indicated the existence of a new superhard and transparent allotrope of carbon. Numerous metastable candidate structures featuring different topologies have been proposed for “superhard graphite”, showing a good agreement with experimental X-ray data. In order to determine the nature of this new allotrope, we use evolutionary metadynamics to systematically search for low-enthalpy sp3 carbon structures easily accessible from graphite and we employ molecular-dynamics transition path sampling to investigate the corresponding kinetic pathways starting from graphite at 15–20 GPa. Real transformation kinetics are computed and physically meaningful transition mechanisms are produced at the atomistic level of detail in order to demonstrate how nucleation mechanism and transformation kinetics lead to M-carbon as final product of cold compression of graphite. This establishes M-carbon as an experimentally synthesized carbon allotrope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Modern Methods of Crystal Structure Prediction, Oganov, A. R., Ed., Weinheim, Germany: Wiley-VCH, 2010.

    Google Scholar 

  2. Oganov, A.R., Chen, J., Gatti, et al., Ionic High-Pressure Form of Elemental Boron, Nature, 2009, vol. 457, pp. 863–867.

    Article  CAS  Google Scholar 

  3. Ma, Y., Eremets, M.I., Oganov A.R., et al., Transparent Dense Sodium, ibid., 2009, vol. 458, pp. 182–185.

    Article  CAS  Google Scholar 

  4. Oganov, A.R. and Lyakhov, A.O., Towards the Theory of Hardness of Materials, J. Superhard Mater., 2010, vol. 32, no. 3, pp. 143–147.

    Article  Google Scholar 

  5. Gao, F., He, J., Wu, E., et al., Hardness of Covalent Crystals, Phys. Rev. Lett., 2003, vol. 91, art. 015502.

  6. Simunek, A. and Vackar, J., Hardness of Covalent and Ionic Crystals: First-Principle Calculations, ibid., 2006, vol. 96, art. 085501.

  7. Li, K., Wang, X., Zhang, F., and Xue, D., Electronegativity Identification of Novel Superhard Materials, ibid., 2008, vol. 100, art. 235504.

  8. Pan, Z., Sun, H., Zhang, Y., and Chen, C., Harder than Diamond: Superior Indentation Strength of Wurtzite BN and Lonsdaleite, ibid., 2009, vol. 102, art. 055503.

  9. Aust, R.B. and Drickamer, H.G., Carbon: a New Crystalline Phase, Science, 1963, vol. 140, pp. 817–819.

    Article  CAS  Google Scholar 

  10. Bundy, F.P. and Kasper, J.S., Hexagonal Diamond—a New Form of Carbon, J. Chem. Phys., 1967, vol. 46, pp. 3437–3446.

    Article  CAS  Google Scholar 

  11. Utsumi, W. and Yagi, T., Light-Transparent Phase Formed By Room-Temperature Compression of Graphite, Science, 1991, vol. 252, pp. 1542–1544.

    CAS  Google Scholar 

  12. Mao, W.L., Mao, H.K., Eng, P.J., et al., Bonding Changes in Compressed Superhard Graphite, ibid., 2003, vol. 302, pp. 425–427.

    Article  CAS  Google Scholar 

  13. Li, Q., Ma, Y., Oganov, A.R., Wang, H., et al., Superhard Monoclinic Polymorph of Carbon, Phys. Rev. Lett., 2009, vol. 102, art. 175506.

  14. Umemoto, K., Wentzcovitch, R.M., Saito, S., and Miyake, T., Body-Centered Tetragonal C4: A Viable sp3 Carbon Allotrope, ibid., 2010, vol. 104, art. 125504.

  15. Zhou, X.F., Qian, G.R., Dong, X., Zhang, L., Tian, Y., and Wang, H.T., Ab initio Study of the Formation of Transparent Carbon under Pressure, Phys. Rev. B, 2010, vol. 82, art. 134126.

  16. Wang, J.-T., Chen, C., and Kawazoe, Y., Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon, Phys. Rev. Lett., 2011, vol. 106, art. 075501.

  17. Zhao, Z., Xu, B., Zhou, X. F., et al. Novel Superhard Carbon: C-Centered Orthorhombic C8, ibid., 2011, vol. 107, art. 215502.

  18. Selli, D., Baburin, I., Martinek, R., and Leoni, S., Superhard sp3 Carbon Allotropes with Odd and Even Ring Topologies, Phys. Rev. B, 2011, vol. 84, art. 161411(R).

  19. Oganov, A.R. and Glass, C.W., Crystal Structure Prediction Using Ab initio Evolutionary Techniques: Principles and Applications, J. Chem. Phys., 2006, vol. 124, art. 244704.

  20. Baughman, R.H., Liu, A.Y., Cui, C., and Schields, P.J., A Carbon Phase that Graphitizes at Room Temperature, Synth. Met., 1997, vol. 86, pp. 2371–2374.

    Article  CAS  Google Scholar 

  21. Laion, A. and Parrinello, M., Escaping Free-Energy Minima, Proc. Natl. Acad. Sci. of the USA, 2002, vol. 99, pp. 12562–12566.

    Article  Google Scholar 

  22. Martinek, R., Laion, A., and Parrinello, M., Predicting Crystal Structures: the Parrinello-Rahman Method Revisited, Phys. Rev. Lett., 2003, vol. 90, art. 07550.

  23. Lyakhov, A.L., Oganov, A.R., and Valle, M., How to Predict Very Large and Complex Crystal Structures, Comp. Phys. Comm., 2010, vol. 181, pp. 1623–1632.

    Article  CAS  Google Scholar 

  24. Zhu, Q., Oganov, A.R., and Lyakhov, A.L., Evolutionary Metadynamics: a Novel Method to Predict Crystal Structures, CrystEngComm., 2010, vol. 14, pp. 3596–3601.

    Article  Google Scholar 

  25. Pugh, S.F., Relations Between Elastic Moduli and Plastic Properties of Polycrystalline Pure Metals, Philos. Mag., 1954, vol. 45, pp. 823–843.

    CAS  Google Scholar 

  26. Zhu, Q., Zeng, Q., and Oganov, A.R., Systematic Search for Low-Enthalpy sp3 Carbon Allotropes Using Evolutionary Metadynamics, Phys. Rev. B, 2012, vol. 85, art. 01407.

  27. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.

    Article  CAS  Google Scholar 

  28. Blöchl, P.E., Projector Augmented-Wave Method, Phys. Rev. B, 1994, vol. 50, pp. 17953–17979.

    Article  Google Scholar 

  29. Kresse, G. and Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, ibid., 1994, vol. 59, pp. 1758–1775.

    Article  Google Scholar 

  30. Kresse, G. and Furthmüller, J., Efficient Iterative Schemes for Ab initio Total-Energy Calculations Using a Plane-Wave Basis Set, ibid., 1996, vol. 54, pp. 11169–11186.

    Article  CAS  Google Scholar 

  31. Bolhuis, P. G., Dellago, C. and Chandler, D., Sampling Ensembles of Deterministic Transition Pathways, Faraday Discuss., 1998, vol. 110, pp. 421–436.

    Article  CAS  Google Scholar 

  32. Dellago, C., Bolhuis, P.G., Csajka, F.S., and Chandler, D., Transition Path Sampling and the Calculation of Rate Constants, J. Chem. Phys., 1998, vol. 108, pp. 1964–1978.

    Article  CAS  Google Scholar 

  33. Bolhuis, P.G., Chandler, D., Dellago, C., and Geissler, P.L., Transition Path Sampling: Throwing Ropes over Rough Mountain Passes, in the Dark, Annu. Rev. Phys. Chem., 2002, vol. 3, pp. 291–318.

    Article  Google Scholar 

  34. Frenkel, D. and Smit, B., Understanding Molecular Simulations from Algorithms to Applications, 2nd Ed., San Diego: Academic, 2002.

    Google Scholar 

  35. Martyna, G.J., Tobias, D.J., and Klein, M.L., Constant Pressure Molecular Dynamics Algorithms, J. Chem. Phys., 1994, vol. 101, pp. 4177–4190.

    Article  CAS  Google Scholar 

  36. Seifert, G., Porezag, D., and Frauenheim, Th. Calculations of Molecules, Clusters, and Solids with a Simplified LCAO-DFT-LDA Scheme, Int. J. Quant. Chem., 1996, vol. 58, pp. 185–192.

    Article  CAS  Google Scholar 

  37. Zhechkov, L., Heine, T., Patchkovskii, S., et al., An Efficient a Posteriori Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding, J. Chem. Theo. Comp., 2005, vol. 1, pp. 841–847.

    Article  CAS  Google Scholar 

  38. http://cp2k.berlios.de (2011).

  39. Boulfelfel, S.E., Oganov, A.R., and Leoni, S., Understanding the Nature of “Superhard Graphite”, Scientific Reports, 2012, vol. 2, pp. 471–479.

    Article  Google Scholar 

  40. Wang, Y., Panzik, J.E., Kiefer, B., and Lee, K.K.M., Crystal Structure of Graphite under Room-Temperature Compression and Decompression, ibid., 2012, vol. 2, pp. 520–527.

    Google Scholar 

  41. Xu, J.-A., Mao, H.-K., and Hemley, R.J., The Gem Anvil Cell: High-Pressure Behaviour of Diamond and Related Materials, J. Phys. Condens. Matter, 2002, vol. 14, pp. 11549–11552.

    Article  CAS  Google Scholar 

  42. Boulfelfel, S. E., Seifert, G., Grin, Yu., and Leoni, S., Squeezing Lone Pairs: the A17 to A7 Pressure-Induced Phase Transition in Black Phosphorus, Phys. Rev. B, 2012, vol. 85, art. 014110.

  43. Zahn, D. and Leoni, S., Nucleation and Growth in Pressure-Induced Phase Transitions from Molecular Dynamics Simulations: Mechanism of the Reconstructive Transformation of NaCl to the CsCl-type Structure, Phys. Rev. Lett., 2004, vol. 92, art. 250201.

  44. Boulfelfel, S. E. & Leoni, S. Competing Intermediates in the Pressure-Induced Wurtzite to Rocksalt Phase Transition in ZnO, Phys. Rev. B, 2008, vol. 78, art. 125204.

  45. Leoni, S. and Zahn, D., Putting the Squeeze on NaCl: Modeling and Simulation of the Pressure Driven B1-B2 Phase Transition, Z. Kristallogr., 2004, vol. 219, pp. 339–344.

    Article  CAS  Google Scholar 

  46. Boulfelfel, S.E., Zahn, D., Grin, Yu., and Leoni, S., Walking the Path from B4- to B1-type Structures in GaN, Phys. Rev. Lett., 2007, vol. 99, art. 125505.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original English Text © S.E. Boulfelfel, Q. Zhu, A.R. Oganov, 2012, published in Sverkhtverdye Materialy, 2012, Vol. 34, No. 6, pp. 12–24.

About this article

Cite this article

Boulfelfel, S.E., Zhu, Q. & Oganov, A.R. Novel sp3 forms of carbon predicted by evolutionary metadynamics and analysis of their synthesizability using transition path sampling. J. Superhard Mater. 34, 350–359 (2012). https://doi.org/10.3103/S1063457612060093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457612060093

Keywords

Navigation