Skip to main content
Log in

Spatiotemporal analysis of strain localization in dense granular materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Predicting localized failure in granular materials is a problem of great interest from both the scientific and technological perspectives. The initiation and growth of strain localization have been studied using laboratory experiments and particle-based numerical simulations, and their findings have been preliminarily implemented into continuum constitutive models. In this study, we revisit strain localization in granular materials using the spatiotemporal data analysis technique, which has been extensively employed in data mining science and social science for the sake of different applications. A dense packing of granular material subjected to biaxial compression was simulated using the combined finite and discrete element method. The large amount of particle-level kinematical data, including the translational and rotational particle motion, fluctuating velocity, granular temperature, and local strain, are collected for subsequent spatiotemporal data analysis. The spatiotemporal data analysis provides a new perspective on the strain localization in dense granular materials and a rich body of new insights are presented for the first time. The spatial autocorrelation analysis results in Moran’s I values close to 1, and positive Z scores and statistically significant p values, which indicate that a dense granular system features clustered patterns during shearing. This finding proves yet again that dense granular materials have an inherent short range order. Eventually, correspondence between localized modes with different particle kinematics and spatial distributions of local Moran statistics and quadrant location map are investigated. By assuming shearing of dense granular materials is a first-order Markov chain process, the convergence and time homogeneity of this process are analyzed. Both the maximum likelihood and Pearson test statistics clearly demonstrate that shearing of dense granular materials is a time-homogenous Markov chain process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alonso-Marroquín F, Herrmann HJ (2005) The incremental response of soils. An investigation using a discrete-element model. J Eng Math 52:11–34. https://doi.org/10.1007/s10665-004-6675-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Alshibli KA, Hasan A (2008) Spatial variation of void ratio and shear band thickness in sand using X-ray computed tomography. Géotechnique 58:249–257. https://doi.org/10.1680/geot.2008.58.4.249

    Article  Google Scholar 

  3. Andò E, Hall SA, Viggiani G, Desrues J, Bésuelle P (2012) Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech 7:1–13. https://doi.org/10.1007/s11440-011-0151-6

    Article  Google Scholar 

  4. Anselin L (1995) Local indicators of spatial association-LISA. Geogr Anal 27:93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

    Article  Google Scholar 

  5. Bandi MM, Rivera MK, Krzakala F, Ecke RE (2013) Fragility and hysteretic creep in frictional granular jamming. Phys Rev E Stat Nonlinear Soft Matter Phys 87:1–14. https://doi.org/10.1103/PhysRevE.87.042205

    Article  Google Scholar 

  6. Bi D, Zhang J, Chakraborty B, Behringer RP (2011) Jamming by shear. Nature 480:355–358. https://doi.org/10.1038/nature10667

    Article  Google Scholar 

  7. Bickenbach F, Bode E (2003) Evaluating the Markov property in studies of economic convergence. Int Reg Sci Rev 26:363–392. https://doi.org/10.1177/0160017603253789

    Article  Google Scholar 

  8. Borja RI, Andrade JE (2006) Critical state plasticity. Part VI: meso-scale finite element simulation of strain localization in discrete granular materials. Comput Methods Appl Mech Eng 195:5115–5140. https://doi.org/10.1016/j.cma.2005.08.020

    Article  MATH  Google Scholar 

  9. Borja RI, Song X, Rechenmacher AL, Abedi S, Wu W (2013) Shear band in sand with spatially varying density. J Mech Phys Solids 61:219–234. https://doi.org/10.1016/j.jmps.2012.07.008

    Article  Google Scholar 

  10. Campbell CS (2006) Granular material flows—an overview. Powder Technol 162:208–229. https://doi.org/10.1016/j.powtec.2005.12.008

    Article  Google Scholar 

  11. Cheung G, O’Sullivan C (2008) Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations. Particuology 6:483–500. https://doi.org/10.1016/j.partic.2008.07.018

    Article  Google Scholar 

  12. Cundall PA (1988) Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25:107–116. https://doi.org/10.1016/0148-9062(88)92293-0

    Article  Google Scholar 

  13. Desrues J, Viggiani G (2004) Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int J Numer Anal Methods Geomech 28:279–321. https://doi.org/10.1002/nag.338

    Article  Google Scholar 

  14. Fazekas S, Török J, Kertész J, Wolf DE (2006) Morphologies of three-dimensional shear bands in granular media. Phys Rev E Stat Nonlinear Soft Matter Phys 74:1–6. https://doi.org/10.1103/PhysRevE.74.031303

    Article  Google Scholar 

  15. Frenning G (2008) An efficient finite/discrete element procedure for simulating compression of 3D particle assemblies. Comput Methods Appl Mech Eng 197:4266–4272. https://doi.org/10.1016/j.cma.2008.05.002

    Article  MATH  Google Scholar 

  16. Fu P, Dafalias YF (2012) Quantification of large and localized deformation in granular materials. Int J Solids Struct 49:1741–1752. https://doi.org/10.1016/j.ijsolstr.2012.03.006

    Article  Google Scholar 

  17. Fu YR, Wang LB (2007) Quantification and simulation of particle kinematics and local strains in granular materials using X-ray tomography imaging and discrete element method. J Eng Mech 134:143–154. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:2(143)

    Article  Google Scholar 

  18. Gethin DT, Yang XS, Lewis RW (2006) A two dimensional combined discrete and finite element scheme for simulating the flow and compaction of systems comprising irregular particulates. Comput Methods Appl Mech Eng 195:5552–5565. https://doi.org/10.1016/j.cma.2005.10.025

    Article  MATH  Google Scholar 

  19. Guo N, Zhao J (2014) A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng 99:789–818. https://doi.org/10.1002/nme.4702

    Article  MathSciNet  MATH  Google Scholar 

  20. Hall SA, Muir Wood D, Ibraim E, Viggiani G (2010) Localised deformation patterning in 2D granular materials revealed by digital image correlation. Granul Matter 12:1–14. https://doi.org/10.1007/s10035-009-0155-1

    Article  Google Scholar 

  21. Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G et al (2010) Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60:315–322. https://doi.org/10.1680/geot.2010.60.5.315

    Article  Google Scholar 

  22. Hart R, Cundall PA, Lemos J (1988) Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25:117–125. https://doi.org/10.1016/0148-9062(88)92294-2

    Article  Google Scholar 

  23. Higo Y, Oka F, Sato T, Matsushima Y, Kimoto S (2013) Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation. Soils Found 53:181–198. https://doi.org/10.1016/j.sandf.2013.02.001

    Article  Google Scholar 

  24. Hurley RC, Hall SA, Andrade JE, Wright J (2016) Quantifying interparticle forces and heterogeneity in 3D granular materials. Phys Rev Lett 117:1–5. https://doi.org/10.1103/PhysRevLett.117.098005

    Article  Google Scholar 

  25. Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109:192–205. https://doi.org/10.1016/S0032-5910(99)00236-3

    Article  Google Scholar 

  26. Kuhn MR (1999) Structured deformation in granular materials. Mech Mater 31:407–429. https://doi.org/10.1016/S0167-6636(99)00010-1

    Article  Google Scholar 

  27. Lopera Perez JC, Kwok CY, O’Sullivan C, Huang X, Hanley KJ (2016) Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework. Soils Found 56:152–159. https://doi.org/10.1016/j.sandf.2016.01.013

    Article  Google Scholar 

  28. Ma G, Zhou W, Chang X, Yuan W (2014) Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles. Int J Geomech 14:4014014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000372

    Article  Google Scholar 

  29. Ma G, Zhou W, Chang XL (2014) Modeling the particle breakage of rockfill materials with the cohesive crack model. Comput Geotech 61:1143–1320. https://doi.org/10.1016/j.compgeo.2014.05.006

    Article  Google Scholar 

  30. Ma G, Zhou W, Ng TT, Cheng YG, Chang XL (2015) Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model. Acta Geotech 10:481–496. https://doi.org/10.1007/s11440-015-0367-y

    Article  Google Scholar 

  31. Ma G, Zhou W, Chang X, Ng T-T, Yang L (2016) Formation of shear bands in crushable and irregularly shaped granular materials and the associated microstructural evolution. Powder Technol 301:118–130. https://doi.org/10.1016/j.powtec.2016.05.068

    Article  Google Scholar 

  32. Ma G, Zhou W, Chang X-L, Chen M-X (2016) A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granul Matter 18:7. https://doi.org/10.1007/s10035-016-0615-3

    Article  Google Scholar 

  33. Ma G, Zhou W, Regueiro RA, Wang Q, Chang X (2017) Modeling the fragmentation of rock grains using computed tomography and combined FDEM. Powder Technol 308:388–397. https://doi.org/10.1016/j.powtec.2016.11.046

    Article  Google Scholar 

  34. Ma G, Regueiro RA, Zhou W et al (2018) Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotech. https://doi.org/10.1007/s11440-017-0621-6

    Google Scholar 

  35. Mahmood Z, Iwashita K (2009) Influence of inherent anisotropy on mechanical behavior of granular materials based on DEM simulations. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.830

    MATH  Google Scholar 

  36. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17. https://doi.org/10.2307/2332142

    Article  MathSciNet  MATH  Google Scholar 

  37. Munjiza A (2004) The combined finite-discrete element method. Wiley, Chichester. https://doi.org/10.1002/0470020180

    Book  MATH  Google Scholar 

  38. Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12:145–174. https://doi.org/10.1108/02644409510799532

    Article  MATH  Google Scholar 

  39. O’Sullivan C, Bray JD, Li S (2003) A new approach for calculating strain for particulate media. Int J Numer Anal Methods Geomech 27:859–877. https://doi.org/10.1002/nag.304

    Article  MATH  Google Scholar 

  40. Peña AA, García-Rojo R, Herrmann HJ (2007) Influence of particle shape on sheared dense granular media. Granul Matter 9:279–291. https://doi.org/10.1007/s10035-007-0038-2

    Article  MATH  Google Scholar 

  41. Peters JF, Walizer LE (2013) Patterned nonaffine motion in granular media. J Eng Mech 139:1479–1490. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000556

    Article  Google Scholar 

  42. Radjai F, Roux S (2002) Turbulentlike fluctuations in quasistatic flow of granular media. Phys Rev Lett 89:064302/1–064302/4. https://doi.org/10.1103/PhysRevLett.89.064302

    Article  Google Scholar 

  43. Rechenmacher AL (2006) Grain-scale processes governing shear band initiation and evolution in sands. J Mech Phys Solids 54:22–45. https://doi.org/10.1016/j.jmps.2005.08.009

    Article  MATH  Google Scholar 

  44. Rechenmacher A, Abedi S, Chupin O (2010) Evolution of force chains in shear bands in sands. Géotechnique 60:343–351. https://doi.org/10.1680/geot.2010.60.5.343

    Article  Google Scholar 

  45. Rechenmacher AL, Abedi S, Chupin O, Orlando AD (2011) Characterization of mesoscale instabilities in localized granular shear using digital image correlation. Acta Geotech 6:205–217. https://doi.org/10.1007/s11440-011-0147-2

    Article  Google Scholar 

  46. Rey SJ (2001) Spatial empirics for economic growth and convergence. Geogr Anal 33:195–214. https://doi.org/10.1111/j.1538-4632.2001.tb00444.x

    Article  Google Scholar 

  47. Rey SJ (2009) Show me the code: spatial analysis and open source. J Geogr Syst 11:191–207. https://doi.org/10.1007/s10109-009-0086-8

    Article  Google Scholar 

  48. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23:371–394. https://doi.org/10.1016/0022-5096(75)90001-0

    Article  Google Scholar 

  49. Semnani SJ, Borja RI (2017) Quantifying the heterogeneity of shale through statistical combination of imaging across scales. Acta Geotech 12:1193–1205. https://doi.org/10.1007/s11440-017-0576-7

    Article  Google Scholar 

  50. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Methods Geomech 40:2423–2449. https://doi.org/10.1002/nag.2536

    Article  Google Scholar 

  51. Shorrocks AF (1978) The measurement of mobility. Econometrica 46:1013. https://doi.org/10.2307/1911433

    Article  MATH  Google Scholar 

  52. Sun Q, Jin F, Wang G, Song S, Zhang G (2015) On granular elasticity. Sci Rep 5:9652. https://doi.org/10.1038/srep09652

    Article  Google Scholar 

  53. Thornton C (2010) Quasi-static simulations of compact polydisperse particle systems. Particuology 8:119–126. https://doi.org/10.1016/j.partic.2009.07.007

    Article  Google Scholar 

  54. Thornton C, Zhang L (2006) A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos Mag 86:3425–3452. https://doi.org/10.1080/14786430500197868

    Article  Google Scholar 

  55. Tordesillas A, Peters JF, Gardiner BS (2004) Shear band evolution and accumulated microstructural development in Cosserat media. Int J Numer Anal Methods Geomech 28:981–1010. https://doi.org/10.1002/nag.343

    Article  MATH  Google Scholar 

  56. Tordesillas A, Muthuswamy M, Walsh SD (2008) Mesoscale measures of nonaffine deformation in dense granular assemblies. J Eng Mech 134:1095–1113. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:12(1095)

    Article  Google Scholar 

  57. Tordesillas A, Pucilowski S, Walker DM, Peters JF, Walizer LE (2014) Micromechanics of vortices in granular media: connection to shear bands and implications for continuum modelling of failure in geomaterials. Int J Numer Anal Methods Geomech 38:1247–1275. https://doi.org/10.1002/nag.2258

    Article  Google Scholar 

  58. Tordesillas A, Pucilowski S, Lin Q, Peters JF, Behringer RP (2016) Granular vortices: identification, characterization and conditions for the localization of deformation. J Mech Phys Solids 90:215–241. https://doi.org/10.1016/j.jmps.2016.02.032

    Article  MathSciNet  Google Scholar 

  59. Tordesillas A, Walker DM, Andò E, Viggiani G (2016) Revisiting localized deformation in sand with complex systems subject areas: author for correspondence. Proc R Soc A 439:1–20. https://doi.org/10.1098/rspa.2012.0606

    Google Scholar 

  60. Walker DM, Tordesillas A (2010) Topological evolution in dense granular materials: a complex networks perspective. Int J Solids Struct 47:624–639. https://doi.org/10.1016/j.ijsolstr.2009.10.025

    Article  MATH  Google Scholar 

  61. Walker DM, Tordesillas A, Kuhn MR (2017) Spatial connectivity of force chains in a simple shear 3D simulation exhibiting shear bands. J Eng Mech 143:C4016009. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001092

    Article  Google Scholar 

  62. Wang J, Dove JE, Gutierrez MS (2007) Discrete-continuum analysis of shear banding in the direct shear test. Géotechnique 57:513–526. https://doi.org/10.1680/geot.2007.57.6.513

    Article  Google Scholar 

  63. Williams JR, Rege N (1997) The development of circulation cell structures in granular materials undergoing compression. Powder Technol 90:187–194. https://doi.org/10.1016/S0032-5910(96)03201-9

    Article  Google Scholar 

  64. Zhou W, Yang L, Ma G, Xu K, Lai Z, Chang X (2017) DEM modeling of shear bands in crushable and irregularly shaped granular materials. Granul Matter 19:1–12. https://doi.org/10.1007/s10035-017-0712-y

    Article  Google Scholar 

  65. Zhu H, Nicot F, Darve F (2016) Meso-structure evolution in a 2D granular material during biaxial loading. Granul Matter. https://doi.org/10.1007/s10035-016-0608-2

    Google Scholar 

  66. Zhu H, Nguyen HNG, Nicot F, Darve F (2016) On a common critical state in localized and diffuse failure modes. J Mech Phys Solids 95:112–131. https://doi.org/10.1016/j.jmps.2016.05.026

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their careful review and constructive comments, which significantly improved the manuscript. This work has been supported by National Key R&D Program of China (Grant No. 2017YFC0404801), National Science Foundation of China under Grant No. 51509190, and China Postdoctoral Science Foundation (No. 2016T907272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Regueiro, R.A., Zhou, W. et al. Spatiotemporal analysis of strain localization in dense granular materials. Acta Geotech. 14, 973–990 (2019). https://doi.org/10.1007/s11440-018-0685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0685-y

Keywords

Navigation