Skip to main content
Log in

Influence of particle shape on sheared dense granular media

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We study by means of molecular dynamics simulations of periodic shear cells, the influence of particle shape on the global mechanical behavior of dense granular media. At large shear deformation samples with elongated particles, independent of their initial orientation, reach the same stationary value for both shear force and void ratio. At the micro-mechanical level the stress, the fabric and the inertia tensors of the particles are used to study the evolution of the media. In the case of isotropic particles the direction of the principal axis of the fabric tensor is aligned with the one of the principal stress, while for elongated particles the fabric orientation is strongly dependent on the orientation of the particles. The shear band width is shown to depend on the particle shape due to the tendency of elongated particles to preferential orientations and less rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casagrande A. and Carillo N. (1944). Shear failure of anisotropic materials. Proc. Boston Soc. Civil Engineers 31: 74–78

    Google Scholar 

  2. Oda M. (1972). Initial fabrics and their relations to mechanical properties of granular materials. Soils Found. 12(1): 17–36

    Google Scholar 

  3. Oda M., Nemat-Nasser S. and Konishi J. (1985). Stress-induced anisotropy in granular masses. Soils Found 25(3): 85–97

    Google Scholar 

  4. Oda, M., Nakayama, H.: Introduction of inherent anisotropy of soils in the yield function. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of Granular Materials, pp. 81–90. Elsevier, (1988)

  5. Li X.S. and Dafalias Y.F. (2002). Constitutive modeling of inherently anisotropic sand behavior. J. Geotech. Geoenviron. Eng. 128(10): 868–880

    Article  Google Scholar 

  6. Bowman E.T., Soga K. and Drummond W. (2001). Particle shape characterization using fourier descriptor analysis. Géotechnique 51(6): 545–554

    Article  Google Scholar 

  7. Matsushima, T., Saomoto, H.: Discrete element modeling for irregularly-shaped sand grains. In: Mestat (ed.) In: Proceedings of the NUMGE 2002: Numerical Methods in Geotechnical Engineering, pp. 239–246 (2002)

  8. Bowman, E.T., Soga, K.: The influence of particle shape on the stress–strain and creep response of fine silica sand. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, pp. 1325–1328. Balkema (2005)

  9. Shodja H.M. and Nezami E.G. (2003). A micromechanical study of rolling and sliding contacts in assemblies of oval granules. Int. J. Numer. Anal. Methods Geomech. 27: 403–424

    Article  MATH  Google Scholar 

  10. Nouguier-Lehon, C., Frossard, E.: Influence of particle shape on rotations and rolling movements in granular media. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, pp. 1339–1343. Balkema (2005)

  11. Nouguier-Lehon C., Cambou B. and Vincens E. (2003). Influence of particle shape and angularity on the behavior of granular materials: a numerical analysis. Int. J. Numer. Anal. Methods. Geomech. 27: 1207–1226

    Article  MATH  Google Scholar 

  12. Peña, A.A., Lizcano, A., Alonso-Marroquín, F., Herrmann, H.J.: Investigation of the asymptotic states of granular materials using a discrete model of anisotropic particles. In: García-Rojo, R., Herrmann, H.J ., McNamara, S. (eds.) Powders and Grains 2005, pp. 697–700. Balkema (2005)

  13. Ng T.T. (2001). Fabric evolution of ellipsoidal arrays with different particle shapes. ASCE J. Eng. Mech. 127: 994–99

    Article  Google Scholar 

  14. Ng T.T. (2004). Behavior of ellipsoids of two sizes. J. Geotech. Geoenviron. Eng. ASCE 130(10): 1077–1083

    Article  Google Scholar 

  15. Villarruel F.X., Lauderdale B.E., Mueth D.M. and Jaeger H.M. (2000). Compaction of rods: relaxation and ordering in vibrated, anistopic granular material. Phys. Rev. E 61: 6914

    Article  ADS  Google Scholar 

  16. Lumay G. and Vandewalle N. (2004). Compaction of anisotropic granular materials. Phys. Rev. E 70: 051314

    Article  ADS  Google Scholar 

  17. Ribière P., Richard P., Bideau D. and Delannay R. (2005). Experimental compaction of anisotropic granular media. Eur. Phys. J. E 16: 415–420

    Article  Google Scholar 

  18. Ehrentraut H. and Chrzanowska A. (2003). Induced anisotropy in rapid flows of nonspherical granular materials. In: Hutter, K. and Kirchner, N.P. (eds) Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations., pp 343–364. Springer, Berlin

    Google Scholar 

  19. Majmudar T.S. and Behringer R.P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(23): 1079–1082

    Article  ADS  Google Scholar 

  20. Lätzel M., Luding S. and Herrmann H.J. (2000). Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granular Matter 2(3): 123–135

    Article  Google Scholar 

  21. Tillemans H.-J. and Herrmann H.J. (1995). Simulating deformations of granular solids under shear. Physica A 217: 261–288

    Article  ADS  Google Scholar 

  22. Kun F. and Herrmann H.J. (1996). A study of fragmentation processes using a discrete element method. Comput. Methods Appl. Mech. Eng. 138: 3–18

    Article  MATH  Google Scholar 

  23. Kun F. and Herrmann H.J. (1999). Transition from damage to fragmentation in collision of solids. Phys. Rev. E 59(3): 2623–2632

    Article  ADS  Google Scholar 

  24. Alonso-Marroquin F. and Herrmann H.J. (2002). Calculation of the incremental stress-strain relation of a polygonal packing. Phys. Rev. E 66: 021301

    Article  ADS  Google Scholar 

  25. Veje C.T., Howell D.W. and Behringer R.P. (1999). Kinematics of a 2D granular Couette experiment at the transition to shearing. Phys. Rev. E 59: 739

    Article  ADS  Google Scholar 

  26. Howell D., Behringer R.P. and Veje C. (1999). Stress fluctuations in a 2d granular Couette experiment: a continuous transition. Phys. Rev. Lett. 82: 5241

    Article  ADS  Google Scholar 

  27. Moukarzel C. and Herrmann H.J. (1992). A vectorizable random lattice. J. Stat. Phys. 68: 911–923

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Rothenburg, L., Selvadurai, A.P.S.: A micromechanical definition of the cauchy stress tensor for particulate media. In: Selvadurai, A.P.S. (ed.) Mechanics of Structured Media, pp. 469–486. Elsevier (1981)

  29. Thornton, C., Zhang, L.: A dem comparison of different shear testing devices. In: Kishino (ed.) Powders and Grains 2001, pp. 183–190. Balkema (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, A.A., García-Rojo, R. & Herrmann, H.J. Influence of particle shape on sheared dense granular media. Granular Matter 9, 279–291 (2007). https://doi.org/10.1007/s10035-007-0038-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0038-2

Keywords

Navigation