Skip to main content
Log in

A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

It is well known that particle breakage plays a critical role in the mechanical behavior of granular materials and has been a topic subject to intensive studies. This paper presents a three dimensional fracture model in the context of combined finite-discrete element method (FDEM) to simulate the breakage of irregular shaped granular materials, e.g., sands, gravels, and rockfills. In this method, each particle is discretized into a finite element mesh. The potential fracture paths are represented by pre-inserted non-thickness cohesive interface elements with a progressive damage model. The Mohr–Coulomb model with tension cut-off is employed as the damage initiation criterion to rupture the predominant failure mode at the particle scale. The particle breakage modeling using combined FDEM is validated by the qualitative agreement between the results of simulated single particle crushing tests and those obtained from laboratory tests and prior DEM simulations. A comprehensive numerical triaxial tests are carried out on both the unbreakable and breakable particle assemblies with varied confining pressure and particle crushability. The simulated stress–strain–dilation responses of breakable granular assembly are qualitatively in good agreement with the experimental observations. The effects of particle breakage on the compressibility, shear strength, volumetric response of the fairly dense breakable granular assembly are thoroughly investigated through a variety of mechanism demonstrations and micromechanical analysis. This paper also reports the energy input and dissipation behavior and its relation to the mechanical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hardin, B.O.: Crushing of soil particles. J. Geotech. Eng. 111(10), 1177–1192 (1985)

    Article  Google Scholar 

  2. Lade, P.V., Yamamuro, J.A., Bopp, P.A.: Significance of particle crushing in granular materials. J. Geotech. Eng. 122(4), 309–316 (1996)

    Article  Google Scholar 

  3. Coop, M.R., Sorensen, K.K., Freitas, T.B., et al.: Particle breakage during shearing of a carbonate sand. Géotechnique 54(3), 157–163 (2004)

    Article  Google Scholar 

  4. Xiao, Y., Liu, H., Chen, Y., et al.: Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: influence of particle breakage. J. Geotech. Geoenviron. Eng. 140(12), 04014071 (2014)

    Article  Google Scholar 

  5. Robertson, D., Bolton, M.D.: DEM simulations of crushable grains and soils. In: Kishino, Y. (ed.) Powders and Grains, pp. 623–626. Balkema, Lisse (2001)

    Google Scholar 

  6. Cheng, Y.P., Nakata, Y., Bolton, M.D.: Discrete element simulation of crushable soil. Geotechnique 53(7), 633–641 (2003)

    Article  Google Scholar 

  7. Bolton, M.D., Nakata, Y., Cheng, Y.P.: Micro-and macro-mechanical behaviour of DEM crushable materials. Géotechnique 58(6), 471–480 (2008)

    Article  Google Scholar 

  8. Donohue, S., O’sullivan, C., Long, M.: Particle breakage during cyclic triaxial loading of a carbonate sand. Géotechnique 59(5), 477–482 (2009)

    Article  Google Scholar 

  9. Cil, M.B., Alshibli, K.A.: 3D assessment of fracture of sand particles using discrete element method. Geotech. Lett. 2(3), 161–166 (2012)

    Article  Google Scholar 

  10. Alaei, E., Mahboubi, A.: A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon. Granul Matter 14(6), 707–717 (2012)

    Article  Google Scholar 

  11. Wang, J., Yan, H.: On the role of particle breakage in the shear failure behavior of granular soils by DEM. Int. J. Numer. Anal. Methods Geomech. 37(8), 832–854 (2013)

    Article  Google Scholar 

  12. Lobo-Guerrero, S., Vallejo, L.E.: Discrete element method evaluation of granular crushing under direct shear test conditions. J. Geotech. Geoenviron. Eng. 131(10), 1295–1300 (2005)

    Article  Google Scholar 

  13. Brosh, T., Kalman, H., Levy, A.: Fragments spawning and interaction models for DEM breakage simulation. Granul. Matter 13(6), 765–776 (2011)

    Article  Google Scholar 

  14. de Bono, J.P., McDowell, G.R.: DEM of triaxial tests on crushable sand. Granul. Matter 16(4), 551–562 (2014)

    Article  Google Scholar 

  15. Zhou, W., Yang, L., Ma, G., et al.: Macro–micro responses of crushable granular materials in simulated true triaxial tests. Granul. Matter 17(4), 497–509 (2015)

    Article  Google Scholar 

  16. Munjiza, A., Owen, D.R.J., Bicanic, N.: A combined finite-discrete element method in transient dynamics of fracturing solids. Eng. Comput. 12(2), 145–174 (1995)

    Article  MATH  Google Scholar 

  17. Munjiza, A.: The Combined Finite-Discrete Element Method. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  18. Latham, J.P., Munjiza, A.: The modelling of particle systems with real shapes. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 362, 1953–1972 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Mahabadi, O.K., Cottrell, B.E., Grasselli, G.: An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on Barre granite. Rock Mech. Rock Eng. 43(6), 707–716 (2010)

    Article  ADS  Google Scholar 

  20. Vyazmensky, A., Stead, D., Elmo, D., et al.: Numerical analysis of block caving-induced instability in large open pit slopes: a finite element/discrete element approach. Rock Mech. Rock Eng. 43(1), 21–39 (2010)

    Article  ADS  Google Scholar 

  21. Smoljanović, H., Živaljić, N., Nikolić, Ž.: A combined finite-discrete element analysis of dry stone masonry structures. Eng. Struct. 52(7), 89–100 (2013)

    Article  Google Scholar 

  22. Chang, X.L., Hu, C., Zhou, W., et al.: A combined continuous–discontinuous approach for failure process of quasi-brittle materials. Sci. China Technol. Sci. 57(3), 550–559 (2014)

    Article  Google Scholar 

  23. Ma, G., Zhou, W., Chang, X.L., et al.: Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles. Int. J. Geomech. 14(4), 1–14 (2014)

    Article  Google Scholar 

  24. Ma, G., Zhou, W., Chang, X.L.: Modeling the particle breakage of rockfill materials with the cohesive crack model. Comput. Geotech. 61(9), 132–143 (2014)

    Article  Google Scholar 

  25. Latham, J.P., Anastasaki, E., Xiang, J.: New modelling and analysis methods for concrete armour unit systems using FEMDEM. Coast. Eng. 77(7), 151–166 (2013)

    Article  Google Scholar 

  26. Guo, L., Latham, J.P., Xiang, J.: Numerical simulation of breakages of concrete armour units using a three-dimensional fracture model in the context of the combined finite-discrete element method. Comput. Struct. 146, 117–142 (2015)

    Article  Google Scholar 

  27. Latham, J.P., Munjiza, A., Garcia, X., et al.: Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation. Miner. Eng. 21(11), 797–805 (2008)

    Article  Google Scholar 

  28. ABAQUS 6.10. ABAQUS Analysis User’s Manual. Dassault Systèmes Simulia Corp, Providence (2010)

  29. Xu, X.P., Needleman, A.: Numerical simulations of dynamic crack growth along an interface. Int. J. Fract. 74(4), 289–324 (1995)

    Article  Google Scholar 

  30. Chandra, N., Li, H., Shet, C., et al.: Some issues in the application of cohesive zone models for metal–ceramic interfaces. Int. J. Solids Struct. 39(10), 2827–2855 (2002)

    Article  MATH  Google Scholar 

  31. Alfano, G.: On the influence of the shape of the interface law on the application of cohesive-zone models. Compos. Sci. Technol. 66(6), 723–730 (2006)

    Article  Google Scholar 

  32. Lisjak, A., Liu, Q., Zhao, Q., et al.: Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis. Geophys. J. Int. 195(1), 423–443 (2013)

    Article  ADS  Google Scholar 

  33. Day, R.A., Potts, D.M.: Zero thickness interface elements–numerical stability and application. Int. J. Numer. Anal. Methods Geomech. 18(10), 689–708 (1994)

    Article  Google Scholar 

  34. Zou, Z., Reid, S.R., Li, S., et al.: Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation. J. Compos. Mater. 36(4), 477–499 (2002)

    Article  ADS  Google Scholar 

  35. Camanho, P.P., Davila, C.G., De Moura, M.F.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  ADS  Google Scholar 

  36. Diehl, T.: On using a penalty-based cohesive-zone finite element approach, part I: elastic solution benchmarks. Int. J. Adhes. Adhes. 28(4), 237–255 (2008)

    Article  Google Scholar 

  37. Song, S.H., Paulino, G.H., Buttlar, W.G.: A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Engi. Fract. Mech. 73(18), 2829–2848 (2006)

    Article  Google Scholar 

  38. Turon, A., Davila, C.G., Camanho, P.P., et al.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)

    Article  Google Scholar 

  39. Lens, L.N., Bittencourt, E., d’Avila, V.M.R.: Constitutive models for cohesive zones in mixed-mode fracture of plain concrete. Eng. Fract. Mech. 76(14), 2281–2297 (2009)

    Article  Google Scholar 

  40. Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33(20), 2899–2938 (1996)

    Article  MATH  Google Scholar 

  41. Cheshomi, A., Sheshde, E.A.: Determination of uniaxial compressive strength of microcrystalline limestone using single particles load test. J. Pet. Sci. Eng. 111(11), 121–126 (2013)

    Article  Google Scholar 

  42. Huang, J., Xu, S., Yi, H., et al.: Size effect on the compression breakage strengths of glass particles. Powder Technol. 268(12), 86–94 (2014)

    Article  Google Scholar 

  43. Carmona, H.A., Wittel, F.K., Kun, F., et al.: Fragmentation processes in impact of spheres. Phys. Rev. E 77(5), 463–470 (2008)

    Article  MATH  Google Scholar 

  44. Russell, A., Aman, S., Tomas, J.: Breakage probability of granules during repeated loading. Powder Technol. 269(1), 541–547 (2015)

    Google Scholar 

  45. Nakata, A.F.L., Hyde, M., Hyodo, H.: A probabilistic approach to sand particle crushing in the triaxial test. Geotechnique 49(5), 567–583 (1999)

    Article  Google Scholar 

  46. McDowell, G.R., Amon, A.: The application of Weibull statistics to the fracture of soil particles. Soils Found. 40(5), 133–141 (2000)

    Article  Google Scholar 

  47. Lim, W.L., McDowell, G.R., Collop, A.C.: The application of Weibull statistics to the strength of railway ballast. Granul. Matter 6(4), 229–237 (2004)

    Google Scholar 

  48. Ergenzinger, C., Seifried, R., Eberhard, P.: A discrete element model predicting the strength of ballast stones. Comput. Struct. 108(10), 3–13 (2012)

  49. Cui, L., O’sullivan, C., O’neill, S.: An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model. Geotechnique 57(10), 831–844 (2007)

    Article  Google Scholar 

  50. Wang, Y., Tonon, F.: Modeling triaxial test on intact rock using discrete element method with membrane boundary. J. Eng. Mech. 135(9), 1029–1037 (2009)

    Article  Google Scholar 

  51. Li, X.S., Dafalias, Y.F., Wang, Z.L.: State-dependant dilatancy in critical-state constitutive modelling of sand. Can. Geotech. J. 36(4), 599–611 (1999)

    Article  Google Scholar 

  52. Sayeed, M.A., Suzuki, K., Rahman, M.M., et al.: Strength and deformation characteristics of granular materials under extremely low to high confining pressures in triaxial compression. Int. J. Civil Environ. Eng. 11(4), 1–6 (2011)

    Google Scholar 

  53. Bi, Z., Sun, Q., Jin, F., et al.: Numerical study on energy transformation in granular matter under biaxial compression. Granul. Matter 13(4), 503–510 (2011)

    Article  Google Scholar 

  54. Wang, J., Yan, H.: DEM analysis of energy dissipation in crushable soils. Soils Found. 52(4), 644–657 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51379161 and 51509190) and China Postdoctoral Science Foundation (2015M572195), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Zhou, W., Chang, XL. et al. A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granular Matter 18, 7 (2016). https://doi.org/10.1007/s10035-016-0615-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0615-3

Keywords

Navigation