Skip to main content
Log in

Sintering of MAX-phase materials by spark plasma and other methods

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This review focuses on the comparison of the spark plasma sintering (SPS) with other fabrication methods of MAX-phase materials. In the view of optimizing properties for prospective applications, we summarized different routes to synthesize and sinter bulk/powder MAX-phases with various microstructures, discussed the phase composition of MAX-phases obtained by SPS and other methods. In the article, we introduced the experimental features of various sintering methods and carried out the comparative analysis of “competition phenomenon” between the SPSed MAX-phases and MAX-phases prepared by other technologies. We referred to relevant reports and reviews in which one can acquire a comprehensive understanding of sintering kinetics, sintering thermodynamics, grain growth kinetics, and densification mechanisms. Furthermore, the influence of the sintering routes on the properties of the MAX-phases was discussed paying emphasis on the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Xie Y-p, Bao J-f (2017) Process of MAX phase materials. J Jilin Inst Chem Technol 34:81–85. https://doi.org/10.16039/j.cnki.cn22-1249.2017.11.018(in Chinese)

    Article  Google Scholar 

  2. Barsoum MW (2000) The M(N + 1)AX(N) phases: a new class of solids; thermodynamically stable nanolaminates. Prog Solid State Chem 28:201–281. https://doi.org/10.1016/s0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  3. Wang ZY, Li WT, Wang CC, Wu HC, Ke PL, Wang AY (2020) Transforming the amorphous Ti–Al–C coatings to high-purity Ti2AlC MAX phase coatings by prolonged annealing at 550 °C. Mater Lett 261:127160. https://doi.org/10.1016/j.matlet.2019.127160

    Article  CAS  Google Scholar 

  4. Tang CC, Steinbruck M, Klimenkov M, Jantsch U, Seifert HJ, Ulrich S, Stuber M (2020) Textured growth of polycrystalline MAX phase carbide coatings via thermal annealing of M/C/Al multilayers. J Vac Sci Technol A 38:013401. https://doi.org/10.1116/1.5131544

    Article  CAS  Google Scholar 

  5. Zhang S, Shi L, Mercier F, Chaix-Pluchery O, Chaussende D, Gelard I, Hackens B, Ouisse T (2017) Conversion of MAX phase single crystals in highly porous carbides by high temperature chlorination. Ceram Int 43:8246–8254. https://doi.org/10.1016/j.ceramint.2017.03.153

    Article  CAS  Google Scholar 

  6. Hu CF, Zhang HB, Li FZ, Huang Q, Bao YW (2013) New phases’ discovery in MAX family. Int J Refract Met Hard Mat 36:300–312. https://doi.org/10.1016/j.ijrmhm.2012.10.011

    Article  CAS  Google Scholar 

  7. Haemers J, Gusmao R, Sofer Z (2020) Synthesis protocols of the most common layered carbide and nitride MAX phases. Small Methods 4:1900780. https://doi.org/10.1002/smtd.201900780

    Article  CAS  Google Scholar 

  8. Tao QZ, Lu J, Dahlqvist M, Mockute A, Calder S, Petruhins A, Meshkian R, Rivin O et al (2019) atomically layered and ordered rare-earth i-MAX phases: a new class of magnetic quaternary compounds. Chem Mater 31:2476–2485. https://doi.org/10.1021/acs.chemmater.8b05298

    Article  CAS  Google Scholar 

  9. Fashandi H, Dahlqvist M, Lu J, Palisaitis J, Simak SI, Abrikosov IA, Rosen J, Hultman L et al (2017) Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat Mater 16:814–818. https://doi.org/10.1038/nmat4896

    Article  CAS  Google Scholar 

  10. Li M, Lu J, Luo K, Li YB, Chang KK, Chen K, Zhou J, Rosen J et al (2019) Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 141:4730–4737. https://doi.org/10.1021/jacs.9b00574

    Article  CAS  Google Scholar 

  11. Li YB, Li M, Lu J, Ma BK, Wang ZP, Cheong LZ, Luo K, Zha XH et al (2019) Single-atom-thick active layers realized in nanolaminated Ti-3(AlxCu1-x)C-2 and its artificial enzyme behavior. ACS Nano 13:9198–9205. https://doi.org/10.1021/acsnano.9b03530

    Article  CAS  Google Scholar 

  12. Wang JJ, Ye TN, Gong YT, Wu JZ, Miao NX, Tada T, Hosono H (2019) Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat Commun 10:2284. https://doi.org/10.1038/s41467-019-10297-8

    Article  CAS  Google Scholar 

  13. Chakraborty P, Chakrabarty A, Dutta A, Saha-Dasgupta T (2018) Soft MAX phases with boron substitution: a computational prediction. Phys Rev Mater 2:103605. https://doi.org/10.1103/PhysRevMaterials.2.103605

    Article  Google Scholar 

  14. Zheng L, Zhou Y, Feng Z (2013) Preparation, structural featrures, properties and prospective of MAX hases. Aerosp Mater Technol 43:1–23. https://doi.org/10.3969/j.issn.1007-2330.2013.06.001(in Chinese)

    Article  Google Scholar 

  15. Liu Y-L, Zhu D-G, Hu C-F (2017) Review of MAX phases and its coating fabricated by spraying. Adv Ceram 38:21–28. https://doi.org/10.16253/j.cnki.37-1226/tq.2016.09.003(in Chinese)

    Article  Google Scholar 

  16. Li J-H, Zhang C, Wang X-H (2017) Progress in machinable and electrically conductive laminated ternary ceramics (MAX Phases). Adv Ceram 38:3–20. https://doi.org/10.16253/j.cnki.37-1226/tq.2016.09.007(in Chinese)

    Article  Google Scholar 

  17. Magnuson M, Mattesini M (2017) Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 621:108–130. https://doi.org/10.1016/j.tsf.2016.11.005

    Article  CAS  Google Scholar 

  18. Gonzalez-Julian J, Onrubia S, Bram M, Guillon O (2016) Effect of sintering method on the microstructure of pure Cr2AlC MAX phase ceramics. J Ceram Soc Jpn 124:415–420. https://doi.org/10.2109/jcersj2.15263

    Article  CAS  Google Scholar 

  19. Zhang H, Hu T, Wang XH, Zhou YC (2020) Structural defects in MAX phases and their derivative MXenes: a look forward. J Mater Sci Technol 38:205–220. https://doi.org/10.1016/j.jmst.2019.03.049

    Article  Google Scholar 

  20. Tallman DJ, Anasori B, Barsoum MW (2013) A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air. Mater Res Lett 1:115–125. https://doi.org/10.1080/21663831.2013.806364

    Article  CAS  Google Scholar 

  21. Gu J, Jiang X, Guo W, Li P, Liu C, Chen F (2016) Research progress of layered ternary ceramic of Nb4AlC3. Jiangsu Ceram 49(6–8):19. https://doi.org/10.3969/j.issn.1006-7337.2016.05.003(in Chinese)

    Article  Google Scholar 

  22. Tallman DJ, He LF, Gan J, Caspi EN, Hoffman EN, Barsoum MW (2017) Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121–1085 °C temperature range. J Nucl Mater 484:120–134. https://doi.org/10.1016/j.jnucmat.2016.11.016

    Article  CAS  Google Scholar 

  23. Ward J, Bowden D, Prestat E, Holdsworth S, Stewart D, Barsoum MW, Preuss M, Frankel P (2018) Corrosion performance of Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC MAX phases in simulated primary water conditions. Corrosion Sci 139:444–453. https://doi.org/10.1016/j.corsci.2018.04.034

    Article  CAS  Google Scholar 

  24. Smialek JL, Nesbitt JA, Gabb TP, Garg A, Miller RA (2018) Hot corrosion and low cycle fatigue of a Cr2AlC-coated superalloy. Mater Sci Eng A Struct Mater Prop Microstruct Process 711:119–129. https://doi.org/10.1016/j.msea.2017.10.098

    Article  CAS  Google Scholar 

  25. Mahmoudi Z, Tabaian SH, Rezaie HR, Mahboubi F, Ghazali MJ (2020) Synthesis of Ti2AlC & Ti3AlC2 MAX phases by Arc-PVD using Ti-Al target in C2H2/Ar gas mixture and subsequent annealing. Ceram Int 46:4968–4975. https://doi.org/10.1016/j.ceramint.2019.10.235

    Article  CAS  Google Scholar 

  26. Berger O (2020) The correlation between structure, multifunctional properties and applications of PVD MAX phase coatings. Part II. Texture and high-temperature properties. Surf Eng 36:268–302. https://doi.org/10.1080/02670844.2019.1611076

    Article  CAS  Google Scholar 

  27. Zhang FY, Yan S, Li C, Ding Y, He JN, Yin FX (2019) Synthesis and characterization of MAX phase Cr2AlC based composite coatings by plasma spraying and post annealing. J Eur Ceram Soc 39:5132–5139. https://doi.org/10.1016/j.jeurceramsoc.2019.08.039

    Article  CAS  Google Scholar 

  28. Van Loo K, Lapauw T, Ozalp N, Strom E, Lambrinou K, Vleugels J (2019) Compatibility of SiC-and MAX phase-based ceramics with a KNO3–NaNO3 molten solar salt. Sol Energy Mater Sol Cells 195:228–240. https://doi.org/10.1016/j.solmat.2019.03.007

    Article  CAS  Google Scholar 

  29. Prikhna TO, Podhurs’ka VY, Ostash OP, Vasyliv BD, Sverdun VB, Karpets MV, Serbenyuk TB (2019) Influence of the technology of production of composites based on the max phases of titanium on the process of wear in contact with copper. Part 1. Two-stage technology. Mater Sci 54:589–595. https://doi.org/10.1007/s11003-019-00222-1

    Article  CAS  Google Scholar 

  30. Liu Y, Qu YP, Xin JH, Wang ZH, Fan GH, Xie PT, Sun K (2019) Weakly radio-frequency negative permittivity of poly(vinylidene fluoride)/Ti3SiC2 MAX phase metacomposites. J Inorg Organomet Polym Mater 29:248–257. https://doi.org/10.1007/s10904-018-0983-8

    Article  CAS  Google Scholar 

  31. Lu JL, Abbas N, Tang JN, Tang J, Zhu GM (2019) Synthesis and characterization of conductive ceramic MAX-phase coatings for metal bipolar plates in simulated PEMFC environments. Corrosion Sci 158:108106. https://doi.org/10.1016/j.corsci.2019.108106

    Article  CAS  Google Scholar 

  32. Derradji M, Henniche A, Wang J, Dayo AQ, Ouyang JH, Liu WB, Medjahed A (2018) High performance nanocomposites from Ti3SiC2 MAX phase and phthalonitrile resin. Polym Compos 39:3705–3711. https://doi.org/10.1002/pc.24401

    Article  CAS  Google Scholar 

  33. Su RR, Zhang HL, O’Connor DJ, Shi LQ, Meng XP, Zhang HB (2016) Deposition and characterization of Ti2AlC MAX phase and Ti3AlC thin films by magnetron sputtering. Mater Lett 179:194–197. https://doi.org/10.1016/j.matlet.2016.05.086

    Article  CAS  Google Scholar 

  34. Hettinger JD, Lofland SE, Finkel P, Meehan T, Palma J, Harrell K, Gupta S, Ganguly A et al (2005) Electrical transport, thermal transport, and elastic properties of M2AlC (M = Ti, Cr, Nb, and V). Phys Rev B 72:115120. https://doi.org/10.1103/PhysRevB.72.115120

    Article  CAS  Google Scholar 

  35. Galyshev S, Bazhin P, Stolin A, Musin F, Astanin V (2017) Heat treatment of composite based on MAX-phases of the Ti–Al–C system. MATEC Web Conf 129:02011. https://doi.org/10.1051/matecconf/201712902011

    Article  CAS  Google Scholar 

  36. Zhan Z, Liu Y, Wang W (2012) Review of layered ternary compound MAX phases. J Yanshan Univ 36:189–195. https://doi.org/10.3969/j.issn.1007-791X.2012.03.001(in Chinese)

    Article  CAS  Google Scholar 

  37. Sokol M, Natu V, Kota S, Barsoum MW (2019) On the chemical diversity of the MAX phases. Trends Chem 1:210–223. https://doi.org/10.1016/j.trechm.2019.02.016

    Article  Google Scholar 

  38. Bai Y, Liu J, Jin Y (2017) Research progress of layered Cr2AlC ternary ceramic. China Ceram Ind 24:22–29. https://doi.org/10.13958/j.cnki.ztcg.2017.05.004(in Chinese)

    Article  Google Scholar 

  39. Lei Y, Liu J, Jin Y, An X, Chen Y (2013) Current research status and development of layered ternary ceramic material Cr2AlC. J Xihua Univ Nat Sci Ed 32:77–81. https://doi.org/10.3969/j.issn.1673-159x.2013.01.015(in Chinese)

    Article  CAS  Google Scholar 

  40. Ren Y, Sun N, Guan C, Sun R, Chu X, Liu D, Wei Z, Lou L et al (2016) Research progress of layered ternary ceramic material of Ti2SC. China Ceram 52:1–6. https://doi.org/10.16521/j.cnki.issn.1001-9642.2016.12.001(in Chinese)

    Article  CAS  Google Scholar 

  41. Lian R, Li Y, Bai P, Jia F (2016) Research progress of ternary compound Ti3SiC2. Foundy Technol 37:209–211. https://doi.org/10.16410/j.issn1000-8365.2016.02.003(in Chinese)

    Article  CAS  Google Scholar 

  42. An N, Liu Y (2014) Research progress of layered ceramic Ti3SiC2. Chin J Pract Stomatol 7:125–128 (in Chinese)

    Google Scholar 

  43. Lu L, Yin H, Yuan H (2012) Research progress of the layered Ti3SiC2 ceramics. J Ceram 33:226–229. https://doi.org/10.3969/j.issn.1000-2278.2012.02.023(in Chinese)

    Article  CAS  Google Scholar 

  44. Qian Y, Zhu J, Zhu C (2012) Research progress on the layered ternary ceramic Ti3AlC2. Mater Rev 26:150–154. https://doi.org/10.3969/j.issn.1005-023x.2012.23.033(in Chinese)

    Article  CAS  Google Scholar 

  45. Li M, Huang Q (2020) Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes. J Inorg Mater 35:1–7. https://doi.org/10.15541/jim20190560

    Article  CAS  Google Scholar 

  46. Biesuz M, Sglavo VM (2019) Flash sintering of ceramics. J Eur Ceram Soc 39:115–143. https://doi.org/10.1016/j.jeurceramsoc.2018.08.048

    Article  CAS  Google Scholar 

  47. Chaim R, Chevallier G, Weibel A, Estournes C (2018) Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review. J Mater Sci 53:3087–3105. https://doi.org/10.1007/s10853-017-1761-7

    Article  CAS  Google Scholar 

  48. Rajkumar Y, Rahul B, Akash PA, Panigrahi B (2017) Nonisothermal sintering of Cr2AlC powder. Int J Appl Ceram Technol 14:63–67. https://doi.org/10.1111/ijac.12617

    Article  CAS  Google Scholar 

  49. Rajkumar Y, Panigrahi BB (2016) Sintering mechanisms of ultrafine Cr2AlC MAX phase powder. Mater Today Commun 8:46–52. https://doi.org/10.1016/j.mtcomm.2016.05.002

    Article  CAS  Google Scholar 

  50. Su ZL, Zeng S, Zhou J, Sun ZM (2014) Synthesis and characterization of Cr2AlC with nanolaminated particles. Chin Sci Bull 59:3266–3270. https://doi.org/10.1007/s11434-014-0315-5

    Article  CAS  Google Scholar 

  51. Mane RB, Haribabu A, Panigrahi BB (2018) Synthesis and sintering of Ti3GeC2 MAX phase powders. Ceram Int 44:890–893. https://doi.org/10.1016/j.ceramint.2017.10.017

    Article  CAS  Google Scholar 

  52. Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Rathel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16:830–849. https://doi.org/10.1002/adem.201300409

    Article  CAS  Google Scholar 

  53. Shamsipoor A, Farvizi M, Razavi M, Keyvani A (2020) Influences of processing parameters on the microstructure and wear performance of Cr2AlC MAX phase prepared by spark plasma sintering method. J Alloys Compd 815:152345. https://doi.org/10.1016/j.jallcom.2019.152345

    Article  CAS  Google Scholar 

  54. Li SB, Xiao LO, Song GM, Wu XM, Sloof WG, van der Zwaag S (2013) Oxidation and crack healing behavior of a fine-grained Cr2AlC ceramic. J Am Ceram Soc 96:892–899. https://doi.org/10.1111/jace.12170

    Article  CAS  Google Scholar 

  55. Tian WB, Wang PL, Kan YM, Zhang GJ, Li YX, Yan DS (2007) Phase formation sequence of Cr2AlC ceramics starting from Cr–Al–C powders. Mater Sci Eng A Struct Mater Prop Microstruct Process 443:229–234. https://doi.org/10.1016/j.msea.2006.08.064

    Article  CAS  Google Scholar 

  56. Li SB, Zhai HX, Zhou Y, Zhang ZL (2005) Synthesis of Ti3SiC2 powders by mechanically activated sintering of elemental powders of Ti, Si and C. Mater Sci Eng A Struct Mater Prop Microstruct Process 407:315–321. https://doi.org/10.1016/j.msea.2005.07.043

    Article  CAS  Google Scholar 

  57. Yan M, Chen Y-l, Mei B-c, Zhu J-q (2008) Synthesis of high-purity Ti2AlN ceramic by hot pressing. Trans Nonferrous Met Soc China 18:82–85. https://doi.org/10.1016/S1003-6326(08)60015-1

    Article  CAS  Google Scholar 

  58. Wang P, Mei B-c, Hong X-l, Zhou W-b (2007) Synthesis of Ti2AlC by hot pressing and its mechanical and electrical properties. Trans Nonferrous Met Soc China 17:1001–1004. https://doi.org/10.1016/S1003-6326(07)60215-5

    Article  CAS  Google Scholar 

  59. Shang W (2010) Development and application of hot isostatic pressing (HIP) technology and equipments. Nonferr Met Eng Res 31:18–21. https://doi.org/10.3969/j.issn.1004-4345.2010.01.007(in Chinese)

    Article  Google Scholar 

  60. Zhu Z, Tian X (2010) Application and development of isostatic pressing technology. Adv Ceram 31:17–24. https://doi.org/10.3969/j.issn.1005-1198.2010.01.004(in Chinese)

    Article  Google Scholar 

  61. Liu H, He R, Zhou W, Wang T (2010) Development and application of hot isostatic pressing technology. Adv Mater Ind. https://doi.org/10.3969/j.issn.1008-892x.2010.11.003(in Chinese)

    Article  Google Scholar 

  62. Tunca B, Lapauw T, Delville R, Neuville DR, Hennet L, Thiaudiere D, Ouisse T, Hadermann J et al (2019) Synthesis and characterization of double solid solution (Zr, Ti)(2)(Al, Sn)C MAX phase ceramics. Inorg Chem 58:6669–6683. https://doi.org/10.1021/acs.inorgchem.9b00065

    Article  CAS  Google Scholar 

  63. Zhan Z (2005) Application and development of hot isostatic pressing technology and apparatus. China Tungsten Ind 20:44–47. https://doi.org/10.3969/j.issn.1009-0622.2005.01.012(in Chinese)

    Article  Google Scholar 

  64. Suijiazhuang (2018) Advantages of hot pressing sintering. https://wenku.baidu.com/view/d71f70ccf6ec4afe04a1b0717fd5360cbb1a8d0d.html. Accessed 28 Oct 2018 (in Chinese)

  65. Xiaofuzi (2018) Chapter 7 Hot Press Sintering. https://wenku.baidu.com/view/aab032446fdb6f1aff00bed5b9f3f90f76c64d89.html?fr=search. Accessed 12 Oct 2018 (in Chinese)

  66. Nongminbaibaiwenku (2018) Hot Press Sintering (in Chinese). https://wenku.baidu.com/view/047b86c0970590c69ec3d5bbfd0a79563c1ed482.html. Accessed 05 October 2018

  67. Lopacinski M, Puszynski J, Lis J (2001) Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique. J Am Ceram Soc 84:3051–3053. https://doi.org/10.1111/j.1151-2916.2001.tb01138.x

    Article  CAS  Google Scholar 

  68. Zhu CC, Zhu J, Wu H, Lin H (2015) Synthesis of Ti3AlC2 by SHS and thermodynamic calculation based on first principles. Rare Met 34:107–110. https://doi.org/10.1007/s12598-013-0174-2

    Article  CAS  Google Scholar 

  69. Vadchenko SG, Sytschev AE, Kovalev DY, Shchukin AS, Konovalikhin SV (2015) Self-propagating high-temperature synthesis in the Ti–Si–C system: features of product patterning. Nanotechnol Russ 10:67–74. https://doi.org/10.1134/s1995078015010206

    Article  CAS  Google Scholar 

  70. Luo L, Zhang Y, Zan X, Liu J, Zhu X, Wu Y (2018) Status and development of self-propagating high-temperature synthesis of high melting point powders. Chin J Rare Met 42:1210–1220. https://doi.org/10.13373/j.cnki.cjrm.XY17110004(in Chinese)

    Article  Google Scholar 

  71. Novak P, Skolakova A, Pignol D, Prusa F, Salvetr P, Kubatik TF, Perriere L, Karlik M (2016) Finding the energy source for self-propagating high-temperature synthesis production of NiTi shape memory alloy. Mater Chem Phys 181:295–300. https://doi.org/10.1016/j.matchemphys.2016.06.062

    Article  CAS  Google Scholar 

  72. Zhou Y, Zhang ZT, Jin X, Ye GT, Liu CY (2016) Fabrication and composition investigation of WSi2/MoSi2 composite powders obtained by a self-propagating high-temperature synthesis method. Arab J Sci Eng 41:2583–2587. https://doi.org/10.1007/s13369-016-2072-z

    Article  CAS  Google Scholar 

  73. Dine S, Kentheswaran V, Vrel D, Couzinie JP, Dirras G (2017) Synthesis of nanometric MoNbW alloy using self-propagating high-temperature synthesis. Adv Powder Technol 28:1739–1744. https://doi.org/10.1016/j.apt.2017.04.011

    Article  CAS  Google Scholar 

  74. Liu X, Yang M (2010) The research on technology of self-sustaining high-temperature synthesis matal-matrix ceramics compsosite. Mod Mach. https://doi.org/10.3969/j.issn.1002-6886.2010.05.033(in Chinese)

    Article  Google Scholar 

  75. Gorshkov VA, Miloserdov PA, Sachkova NV (2020) High-temperature synthesis of cast materials based on the MAX phase Cr2AlC using CaCrO4 + Al + C mixtures. Inorg Mater 56:321–327. https://doi.org/10.1134/s0020168520030048

    Article  CAS  Google Scholar 

  76. Gorshkov VA, Miloserdov PA, Luginina MA, Sachkova NV, Belikova AF (2017) High-temperature synthesis of a cast material with a maximum content of the MAX phase Cr2AlC. Inorg Mater 53:271–277. https://doi.org/10.1134/s0020168517030062

    Article  CAS  Google Scholar 

  77. Tomoshige R, Ishida K, Inokawa H (2019) Effect of added molybdenum on material properties of Zr2SC MAX phase produced by self-propagating high temperature synthesis. Mater Res Proc 13:79–84. https://doi.org/10.21741/9781644900338-14

    Article  CAS  Google Scholar 

  78. Yeh CL, Chiang CH (2017) Combustion synthesis of MAX phase solid solution Ti-3(Al, Sn)C-2. Nano Hybrids Compos 16:73–76. https://doi.org/10.4028/www.scientific.net/NHC.16.73

    Article  Google Scholar 

  79. Kovalev DY, Luginina MA, Vadchenko SG, Konovalikhin SV, Sychev AE, Shchukin AS (2017) Synthesis of a new MAX phase in the Ti–Zr–Al–C system. Mendeleev Commun 27:59–60. https://doi.org/10.1016/j.mencom.2017.01.018

    Article  CAS  Google Scholar 

  80. Zuo B-l, Liu P-j, Zhang W-h, Yan Q-l (2018) Recent progress on the functional materials synthesized by high temperature self-propagating reactions. Chin J Energ Mater 26:537–544. https://doi.org/10.11943/j.issn.1006-9941.2018.06.012(in Chinese)

    Article  Google Scholar 

  81. Renshen (2019) Self-propagating high-temperature synthesis. https://wenku.baidu.com/view/ddcefa4b7e192279168884868762caaedc33ba39.html?fr=search. Accessed 9 May 2019 (in Chinese)

  82. Potanin AY, Loginov PA, Levashov EA, Pogozhev YS, Patsera EI, Kochetov NA (2015) Effect of mechanical activation on Ti3AlC2 max phase formation under self-propagating high-temperature synthesis. Eurasian Chem Technol J 17:233–242. https://doi.org/10.18321/ectj249

    Article  CAS  Google Scholar 

  83. Cuskelly D, Richards E, Kisi E (2016) MAX phase–alumina composites via elemental and exchange reactions in the Tin + 1ACn systems (A = Al, Si, Ga, Ge, In and Sn). J Solid State Chem 237:48–56. https://doi.org/10.1016/j.jssc.2016.01.014

    Article  CAS  Google Scholar 

  84. Azarniya A, Azarniya A, Safavi MS, Ahmadipour MF, Seraji ME, Sovizi S, Saqaei M, Yamanoglu R et al (2020) Physicomechanical properties of porous materials by spark plasma sintering. Crit Rev Solid State Mater Sci 45:22–65. https://doi.org/10.1080/10408436.2018.1532393

    Article  CAS  Google Scholar 

  85. Munir ZA, Quach DV, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19. https://doi.org/10.1111/j.1551-2916.2010.04210.x

    Article  CAS  Google Scholar 

  86. Garay JE (2010) Current-activated, pressure-assisted densification of materials. Ann Rev Mater Res 40:445–468. https://doi.org/10.1146/annurev-matsci-070909-104433

    Article  CAS  Google Scholar 

  87. Wang LJ, Zhang JF, Jiang W (2013) Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int J Refract Met Hard Mater 39:103–112. https://doi.org/10.1016/j.ijrmhm.2013.01.017

    Article  CAS  Google Scholar 

  88. Dudina DV, Bokhonov BB, Olevsky EA (2019) Fabrication of porous materials by spark plasma sintering: a review. Materials 12(28):541. https://doi.org/10.3390/ma12030541

    Article  CAS  Google Scholar 

  89. Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nanomater 2013:625218. https://doi.org/10.1155/2013/625218

    Article  CAS  Google Scholar 

  90. Salamon D, Maca K, Shen ZJ (2012) Rapid sintering of crack-free zirconia ceramics by pressure-less spark plasma sintering. Scr Mater 66:899–902. https://doi.org/10.1016/j.scriptamat.2012.02.013

    Article  CAS  Google Scholar 

  91. Salamon D, Kalousek R, Maca K, Shen ZJ (2015) Rapid grain growth in 3Y-TZP nanoceramics by pressure-assisted and pressure-less SPS. J Am Ceram Soc 98:3706–3712. https://doi.org/10.1111/jace.13837

    Article  CAS  Google Scholar 

  92. Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60:835–838. https://doi.org/10.1016/j.scriptamat.2008.12.059

    Article  CAS  Google Scholar 

  93. Guyot P, Rat V, Coudert JF, Jay F, Maitre A, Pradeilles N (2012) Does the Branly effect occur in spark plasma sintering? J Phys D Appl Phys 45:092001. https://doi.org/10.1088/0022-3727/45/9/092001

    Article  CAS  Google Scholar 

  94. Chaim R (2008) Densification mechanisms in spark plasma sintering of nanocrystalline ceramics (vol 443, pg 25, 2007). Mater Sci Eng A Struct Mater Prop Microstruct Process 486:696. https://doi.org/10.1016/j.msea.2008.02.031

    Article  CAS  Google Scholar 

  95. Chaim R (2016) On densification mechanisms of ceramic particles during spark plasma sintering. Scr Mater 115:84–86. https://doi.org/10.1016/j.scriptamat.2016.01.010

    Article  CAS  Google Scholar 

  96. Orru R, Cao G (2013) Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramics (UHTC) materials. Materials 6:1566–1583. https://doi.org/10.3390/ma6051566

    Article  CAS  Google Scholar 

  97. Saheb N, Iqbal Z, Khalil A, Hakeem AS, Al Aqeeli N, Laoui T, Al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 13:983470. https://doi.org/10.1155/2012/983470

    Article  Google Scholar 

  98. Saheb N, Hayat U, Hassan SF (2019) Recent advances and future prospects in spark plasma sintered alumina hybrid nanocomposites. Nanomaterials 9:1607. https://doi.org/10.3390/nano9111607

    Article  CAS  Google Scholar 

  99. Marder R, Estournes C, Chevallier G, Chaim R (2014) Plasma in spark plasma sintering of ceramic particle compacts. Scr Mater 82:57–60. https://doi.org/10.1016/j.scriptamat.2014.03.023

    Article  CAS  Google Scholar 

  100. Wang Q, Zhang Y, Guo X, Song K (2014) The latest development and research progress of spark plasma sintering process. Rare Met Cem Carbides 42:44–47 (in Chinese)

    Google Scholar 

  101. Dong P, Wang Z, Wang WX, Chen SP, Zhou J (2016) Understanding the spark plasma sintering from the view of materials joining. Scr Mater 123:118–121. https://doi.org/10.1016/j.scriptamat.2016.06.014

    Article  CAS  Google Scholar 

  102. Zhang ZH, Liu ZF, Lu JF, Shen XB, Wang FC, Wang YD (2014) The sintering mechanism in spark plasma sintering—proof of the occurrence of spark discharge. Scr Mater 81:56–59. https://doi.org/10.1016/j.scriptamat.2014.03.011

    Article  CAS  Google Scholar 

  103. Hitchcock D, Livingston R, Liebenberg D (2015) Improved understanding of the spark plasma sintering process. J Appl Phys 117:174505. https://doi.org/10.1063/1.4919814

    Article  CAS  Google Scholar 

  104. Wang S, Xie M, Zhang J, Yang Y, Liu M, Chen Y, Wang S (2012) Development of spark plasma sintering technology. Precious Met 33:73–77. https://doi.org/10.3969/j.issn.1004-0676.2012.03.012(in Chinese)

    Article  Google Scholar 

  105. Yan Q (2016) Research progress of spark plasma sintering. Sci Technol Innov Her 13:36–37. https://doi.org/10.16660/j.cnki.1674-098x.2016.31.036(in Chinese)

    Article  Google Scholar 

  106. Meng Y, Qiang W, Jia C (2014) Status quo of spark plasma sintering in Japan. Powder Metall Technol 32:296–305 (in Chinese)

    Google Scholar 

  107. Angerer P, Yu LG, Khor KA, Krumpel G (2004) Spark-plasma-sintering (SPS) of nanostructured and submicron titanium oxide powders. Mater Sci Eng A Struct Mater Prop Microstruct Process 381:16–19. https://doi.org/10.1016/j.msea.2004.02.009

    Article  CAS  Google Scholar 

  108. Wang JM, Gao L (2005) Photoluminescence properties of nanocrystalline ZnO ceramics prepared by pressureless sintering and spark plasma sintering. J Am Ceram Soc 88:1637–1639. https://doi.org/10.1111/j.1551-2916.2005.00259.x

    Article  CAS  Google Scholar 

  109. Shao C, Zhang G, Cheng P, Qin G (2011) Research progress of processable ternary layered conductive ceramic Ti3SiC2. Chin Mater Sci Technol Equip 4:15–18 (in Chinese)

    Google Scholar 

  110. Kashkarov EB, Syrtanov MS, Sedanova EP, Ivashutenko AS, Lider AM, Travitzky N (2020) Fabrication of paper-derived Ti3SiC2-based materials by spark plasma sintering. Adv Eng Mater 22:2000136. https://doi.org/10.1002/adem.202000136

    Article  CAS  Google Scholar 

  111. Dermeik B, Lorenz H, Bonet A, Travitzky N (2019) Highly filled papers, on their manufacturing, processing, and applications. Adv Eng Mater 21:1900180. https://doi.org/10.1002/adem.201900180

    Article  CAS  Google Scholar 

  112. Pfeiffer S, Lorenz H, Fu Z, Fey T, Greil P, Travitzky N (2018) Al2O3/Cu-O composites fabricated by pressureless infiltration of paper-derived Al2O3 porous preforms. Ceram Int 44:20835–20840. https://doi.org/10.1016/j.ceramint.2018.08.087

    Article  CAS  Google Scholar 

  113. Schultheiß J, Dermeik B, Filbert-Demut I, Hock N, Yin X, Greil P, Travitzky N (2015) Processing and characterization of paper-derived Ti3SiC2 based ceramic. Ceram Int 41:12595–12603. https://doi.org/10.1016/j.ceramint.2015.06.085

    Article  CAS  Google Scholar 

  114. Lorenz H, Thäter J, Matias Carrijo MM, Rambo CR, Greil P, Travitzky N (2017) In situ synthesis of paper-derived Ti3SiC2. J Mater Res 32:3409–3414. https://doi.org/10.1557/jmr.2017.132

    Article  CAS  Google Scholar 

  115. Ge MN, Wang XF, Li GY, Lu C, Zhang JF, Tu R (2019) Synthesis of Cr2AlC from elemental powders with modified pressureless spark plasma sintering. J Wuhan Univ Technol Mater Sci Edit 34:287–292. https://doi.org/10.1007/s11595-019-2048-4

    Article  CAS  Google Scholar 

  116. Li J, Guan L, Wang S, Cao J, Li X (2018) Research progress in flash sintering technology of ceramic materials. China Ceram Ind 25:20–26. https://doi.org/10.13958/j.cnki.ztcg.2018.06.005(in Chinese)

    Article  Google Scholar 

  117. Karakuscu A, Cologna M, Yarotski D, Won J, Francis JSC, Raj R, Uberuaga BP (2012) Defect structure of flash-sintered strontium titanate. J Am Ceram Soc 95:2531–2536. https://doi.org/10.1111/j.1551-2916.2012.05240.x

    Article  CAS  Google Scholar 

  118. Muccillo R, Muccillo ENS (2014) Electric field-assisted flash sintering of tin dioxide. J Eur Ceram Soc 34:915–923. https://doi.org/10.1016/j.jeurceramsoc.2013.09.017

    Article  CAS  Google Scholar 

  119. Sun KN, Zhang J, Jiang TZ, Qiao JS, Sun W, Rooney D, Wang ZH (2016) Flash-sintering and characterization of La0.8Sr0.2Ga0.8Mg0.2O3-delta electrolytes for solid oxide fuel cells. Electrochim Acta 196:487–495. https://doi.org/10.1016/j.electacta.2016.02.207

    Article  CAS  Google Scholar 

  120. Fu Z, Ji W, Wang W (2017) Recent progress in flash sintering technology of ceramic materials. J Chin Ceram Soc 45:1211–1219. https://doi.org/10.14062/j.issn.0454-5648.2017.09.01(in Chinese)

    Article  CAS  Google Scholar 

  121. Yu M, Grasso S, McKinnon R, Saunders T, Reece MJ (2017) Review of flash sintering: materials, mechanisms and modelling. Adv Appl Ceram 116:24–60. https://doi.org/10.1080/17436753.2016.1251051

    Article  CAS  Google Scholar 

  122. Grasso S, Saunders T, Porwal H, Cedillos-Barraza O, Jayaseelan DD, Lee WE, Reece MJ (2014) Flash spark plasma sintering (FSPS) of pure ZrB2. J Am Ceram Soc 97:2405–2408. https://doi.org/10.1111/jace.13109

    Article  CAS  Google Scholar 

  123. Vasylkiv O, Borodianska H, Sakka Y, Demirskyi D (2016) Flash spark plasma sintering of ultrafine yttria-stabilized zirconia ceramics. Scr Mater 121:32–36. https://doi.org/10.1016/j.scriptamat.2016.04.031

    Article  CAS  Google Scholar 

  124. Grasso S, Saunders T, Porwal H, Milsom B, Tudball A, Reece M (2016) Flash spark plasma sintering (FSPS) of α and β SiC. J Am Ceram Soc 99:1534–1543. https://doi.org/10.1111/jace.14158

    Article  CAS  Google Scholar 

  125. Niu B, Zhang F, Zhang JY, Ji W, Wang WM, Fu ZY (2016) Ultra-fast densification of boron carbide by flash spark plasma sintering. Scr Mater 116:127–130. https://doi.org/10.1016/j.scriptamat.2016.02.012

    Article  CAS  Google Scholar 

  126. McKinnon R, Grasso S, Tudball A, Reece MJ (2017) Flash spark plsma sintering of cold-pressed TiB2–hBN. J Eur Ceram Soc 37:2787–2794. https://doi.org/10.1016/j.jeurceramsoc.2017.01.029

    Article  CAS  Google Scholar 

  127. Grasso S, Saunders T, McKinnon R, Castle E, Tatarko P, Du BL, Gucci F, Yu M et al (2016) Spark plasma sintering in a flash. Am Ceram Soc Bull 95:32–34

    CAS  Google Scholar 

  128. Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 °C. J Am Ceram Soc 93:3556–3559. https://doi.org/10.1111/j.1551-2916.2010.04089.x

    Article  CAS  Google Scholar 

  129. M’Peko JC, Francis JSC, Raj R (2014) Field-assisted sintering of undoped BaTiO3: microstructure evolution and dielectric permittivity. J Eur Ceram Soc 34:3655–3660. https://doi.org/10.1016/j.jeurceramsoc.2014.04.041

    Article  CAS  Google Scholar 

  130. Perez-Maqueda LA, Gil-Gonzalez E, Perejon A, Lebrun JM, Sanchez-Jimenez PE, Raj R (2017) Flash sintering of highly insulating nanostructured phase-pure BiFeO3. J Am Ceram Soc 100:3365–3369. https://doi.org/10.1111/jace.14990

    Article  CAS  Google Scholar 

  131. Kok D, Jha SK, Raj R, Mecartney ML (2017) Flash sintering of a three-phase alumina, spinel, and yttria-stabilized zirconia composite. J Am Ceram Soc 100:3262–3268. https://doi.org/10.1111/jace.14818

    Article  CAS  Google Scholar 

  132. Bajpai I, Han YH, Yun J, Francis J, Kim S, Raj R (2016) Preliminary investigation of hydroxyapatite microstructures prepared by flash sintering. Adv Appl Ceram 115:276–281. https://doi.org/10.1080/17436753.2015.1136777

    Article  CAS  Google Scholar 

  133. Biesuz M, Luchi P, Quaranta A, Martucci A, Sglavo VM (2017) Photoemission during flash sintering: an interpretation based on thermal radiation. J Eur Ceram Soc 37:3125–3130. https://doi.org/10.1016/j.jeurceramsoc.2017.03.050

    Article  CAS  Google Scholar 

  134. Quach DV, Avila-Paredes H, Kim S, Martin M, Munir ZA (2010) Pressure effects and grain growth kinetics in the consolidation of nanostructured fully stabilized zirconia by pulsed electric current sintering. Acta Mater 58:5022–5030. https://doi.org/10.1016/j.actamat.2010.05.038

    Article  CAS  Google Scholar 

  135. Shen ZJ, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85:1921–1927. https://doi.org/10.1111/j.1151-2916.2002.tb00381.x

    Article  CAS  Google Scholar 

  136. Schmerbauch C, Gonzalez-Julian J, Roder R, Ronning C, Guillon O (2014) Flash sintering of nanocrystalline zinc oxide and its influence on microstructure and defect formation. J Am Ceram Soc 97:1728–1735. https://doi.org/10.1111/jace.12972

    Article  CAS  Google Scholar 

  137. Ji W, Parker B, Falco S, Zhang JY, Fu ZY, Todd RI (2017) Ultra-fast firing: effect of heating rate on sintering of 3YSZ, with and without an electric field. J Eur Ceram Soc 37:2547–2551. https://doi.org/10.1016/j.jeurceramsoc.2017.01.033

    Article  CAS  Google Scholar 

  138. Cologna M, Raj R (2011) Surface diffusion-controlled neck growth kinetics in early stage sintering of zirconia, with and without applied DC electrical field. J Am Ceram Soc 94:391–395. https://doi.org/10.1111/j.1551-2916.2010.04088.x

    Article  CAS  Google Scholar 

  139. Schie M, Menzel S, Robertson J, Waser R, De Souza RA (2018) Field-enhanced route to generating anti-Frenkel pairs in HfO2. Phys Rev Mater 2:035002. https://doi.org/10.1103/PhysRevMaterials.2.035002

    Article  CAS  Google Scholar 

  140. Genreith-Schriever AR, De Souza RA (2016) Field-enhanced ion transport in solids: reexamination with molecular dynamics simulations. Phys Rev B 94:224304. https://doi.org/10.1103/PhysRevB.94.224304

    Article  Google Scholar 

  141. Sankaranarayanan S, Kaxiras E, Ramanathan S (2009) Electric field tuning of oxygen stoichiometry at oxide surfaces: molecular dynamics simulations studies of zirconia. Energy Environ Sci 2:1196–1204. https://doi.org/10.1039/b913154j

    Article  CAS  Google Scholar 

  142. Koniuszewska A, Naplocha K (2016) Microwave assisted self-propagating high-temperature synthesis of Ti2AlC max phase. Compos Theory Pract 16:109–112

    CAS  Google Scholar 

  143. Hamm CM, Schafer T, Zhang HB, Birkel CS (2016) Non-conventional Synthesis of the 413 MAX Phase V4AlC3. Z Anorg Allg Chem 642:1397–1401. https://doi.org/10.1002/zaac.201600370

    Article  CAS  Google Scholar 

  144. Xie M-y, Shi J-j, Chen G-p, Li X (2019) Research progress and prospect of microwave sintering technology. Powder Metall Ind 29:66–72. https://doi.org/10.13228/j.boyuan.issn1006-6543.20180019(in Chinese)

    Article  Google Scholar 

  145. Zhang H, Wang X-H, Zhou Y-C (2019) Crystal defects in MAX phases: the current status and future directions. Adv Ceram 40:150–173. https://doi.org/10.16253/j.cnki.37-1226/tq.2019.03.002(in Chinese)

    Article  CAS  Google Scholar 

  146. Li CL, Wang ZQ, Ma DC, Wang CY, Wang BL (2013) First-principles study of the structural, mechanical, magnetic, and electronic properties of Cr4AlN3 under pressure. Intermetallics 43:71–78. https://doi.org/10.1016/j.intermet.2013.07.015

    Article  CAS  Google Scholar 

  147. Barsoum MW, Radovic M (2011) Elastic and mechanical properties of the MAX phases. Ann Rev Mater Res 41:195–227. https://doi.org/10.1146/annurev-matsci-062910-100448

    Article  CAS  Google Scholar 

  148. Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y (2014) The effect of the interlayer element on the exfoliation of layered Mo(2)AC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional Mo2C nanosheets. Sci Technol Adv Mater 15:014208. https://doi.org/10.1088/1468-6996/15/1/014208

    Article  CAS  Google Scholar 

  149. Sun ZM, Hashimoto H, Tian WB, Zou Y (2010) Synthesis of the MAX phases by pulse discharge sintering. Int J Appl Ceram Technol 7:704–718. https://doi.org/10.1111/j.1744-7402.2010.02555.x

    Article  CAS  Google Scholar 

  150. Hossein-Zadeh M, Mirzaee O, Mohammadian-Semnani H (2019) An investigation into the microstructure and mechanical properties of V4AlC3 MAX phase prepared by spark plasma sintering. Ceram Int 45:7446–7457. https://doi.org/10.1016/j.ceramint.2019.01.036

    Article  CAS  Google Scholar 

  151. Bazhin PM, Stel’makh LS, Stolin AM (2019) Effect of strain on the formation of a MAX Phase in Ti–Al–C materials during self-propagating high temperature synthesis and extrusion. Inorg Mater 55:302–307. https://doi.org/10.1134/s0020168519030051

    Article  CAS  Google Scholar 

  152. Istomina EI, Istomin PV, Nadutkin AV, Grass VE, Bogdanova AS (2018) Optimization of the carbosilicothermic synthesis of the Ti4SiC3 MAX phase. Inorg Mater 54:528–536. https://doi.org/10.1134/s0020168518060055

    Article  CAS  Google Scholar 

  153. He RJ, Cheng XM, Qu ZL, Fang DN (2016) Pull-off behavior of MAX phase ceramic bolted connections: experimental testing and simulation analysis. Adv Eng Mater 18:591–596. https://doi.org/10.1002/adem.201500288

    Article  Google Scholar 

  154. Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4:1716. https://doi.org/10.1038/ncomms2664

    Article  CAS  Google Scholar 

  155. Son W, Duong T, Talapatra A, Prehn E, Tan ZY, Radovic M, Arroyave R (2018) Minimal effect of stacking number on intrinsic cleavage and shear behavior of Tin + 1AlCn and Tan + 1AlCn MAX phases. J Appl Phys 123:225102. https://doi.org/10.1063/1.5026323

    Article  CAS  Google Scholar 

  156. Lin ZJ, Zhuo MJ, Zhou YC, Li MS, Wang JY (2006) Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides. J Am Ceram Soc 89:3765–3769. https://doi.org/10.1111/j.1551-2916.2006.01303.x

    Article  CAS  Google Scholar 

  157. Zhang J, Liu B, Wang JY, Zhou YC (2009) Low-temperature instability of Ti2SnC: a combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations. J Mater Res 24:39–49. https://doi.org/10.1557/jmr.2009.0012

    Article  Google Scholar 

  158. Hamm CM, Durrschnabel M, Molina-Luna L, Salikhov R, Spoddig D, Farle M, Wiedwald U, Birkel CS (2018) Structural, magnetic and electrical transport properties of non-conventionally prepared MAX phases V2AlC and (V/Mn)(2)AlC. Mater Chem Front 2:483–490. https://doi.org/10.1039/c7qm00488e

    Article  CAS  Google Scholar 

  159. Liu ZM, Zheng LY, Sun LC, Qian YH, Wang JY, Li MS (2014) (Cr2/3Ti1/3)(3)AlC2 and (Cr5/8Ti3/8)(4)AlC3: new MAX-phase compounds in Ti–Cr–Al–C system. J Am Ceram Soc 97:67–69. https://doi.org/10.1111/jace.12731

    Article  CAS  Google Scholar 

  160. Wan DT, He LF, Zheng LL, Zhang J, Bao YW, Zhou YC (2010) A new method to improve the high-temperature mechanical properties of Ti3SiC2 by substituting Ti with Zr, Hf, or Nb. J Am Ceram Soc 93:1749–1753. https://doi.org/10.1111/j.1551-2916.2010.03637.x

    Article  CAS  Google Scholar 

  161. Tian WB, Sun ZM, Hashimoto H, Du YL (2009) Synthesis, microstructure and properties of (Cr1-xVx)(2)AlC solid solutions. J Alloys Compd 484:130–133. https://doi.org/10.1016/j.jallcom.2009.04.111

    Article  CAS  Google Scholar 

  162. Meng FL, Zhou YC, Wang JY (2005) Strengthening of Ti2AlC by substituting Ti with V. Scr Mater 53:1369–1372. https://doi.org/10.1016/j.scriptamat.2005.08.030

    Article  CAS  Google Scholar 

  163. Talapatra A, Duong T, Son W, Gao H, Radovic M, Arroyave R (2016) High-throughput combinatorial study of the effect of M site alloying on the solid solution behavior of M2AlC MAX phases. Phys Rev B 94:104106. https://doi.org/10.1103/PhysRevB.94.104106

    Article  CAS  Google Scholar 

  164. Naguib M, Bentzel GW, Shah J, Halim J, Caspi EN, Lu J, Hultman L, Barsoum MW (2014) New solid solution MAX phases: (Ti-0.5, V-0.5)(3)AlC2, (Nb-0.5, V0.5)(2)AlC, (Nb-0.5, V-0.5)(4)AlC3 and (Nb-0.8, Zr-0.2)(2)AlC. Mater Res Lett 2:233–240. https://doi.org/10.1080/21663831.2014.932858

    Article  CAS  Google Scholar 

  165. Sobolev KV, Kolincio KK, Emelyanov A, Mielewczyk-Gryn A, Gazda M, Roman M, Pazniak A, Rodionova V (2020) Evolution of magnetic and transport properties in (Cr1–xMnx)(2)AlC MAX-phase synthesized by arc melting technique. J Magn Magn Mater 493:165642. https://doi.org/10.1016/j.jmmm.2019.165642

    Article  CAS  Google Scholar 

  166. Konovalikhin SV, Guda SA, Kovalev DY (2018) Composition and structure of (Zr0.37Ti0.63)(3)AlC2 MAX phase crystals prepared by self-propagating high-temperature synthesis. Inorg Mater 54:953–956. https://doi.org/10.1134/s0020168518090054

    Article  CAS  Google Scholar 

  167. Horlait D, Middleburgh SC, Chroneos A, Lee WE (2016) Synthesis and DFT investigation of new bismuth-containing MAX phases. Sci Rep 6:18829. https://doi.org/10.1038/srep18829

    Article  CAS  Google Scholar 

  168. Nechiche M, Cabioc’h T, Casp EN, Rivin O, Hoser A, Gauthier-Brunet V, Chartier P, Dubois S (2017) Evidence for symmetry reduction in Ti-3(Al1-delta Cu delta)C-2 MAX phase solid solutions. Inorg Chem 56:14388–14395. https://doi.org/10.1021/acs.inorgchem.7b01003

    Article  CAS  Google Scholar 

  169. Zhou YC, Chen JX, Wang JY (2006) Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1–xSixC2 solid solutions. Acta Mater 54:1317–1322. https://doi.org/10.1016/j.actamat.2005.10.057

    Article  CAS  Google Scholar 

  170. Arroyave R, Talapatra A, Duong T, Son W, Gao H, Radovic M (2017) Does aluminum play well with others? Intrinsic Al–A alloying behavior in 211/312 MAX phases. Mater Res Lett 5:170–178. https://doi.org/10.1080/21663831.2016.1241319

    Article  CAS  Google Scholar 

  171. Horlait D, Grasso S, Chroneos A, Lee WE (2016) Attempts to synthesise quaternary MAX phases (Zr, M)(2)AlC and Zr-2(Al, A)C as a way to approach Zr2AlC. Mater Res Lett 4:137–144. https://doi.org/10.1080/21663831.2016.1143053

    Article  CAS  Google Scholar 

  172. Xu XL, Ngai TL, Li YY (2015) Synthesis and characterization of quarternary Ti3Si(1-x)AlxC2 MAX phase materials. Ceram Int 41:7626–7631. https://doi.org/10.1016/j.ceramint.2015.02.088

    Article  CAS  Google Scholar 

  173. Jiang C, Chroneos A (2018) Ab initio modeling of MAX phase solid solutions using the special quasirandom structure approach. Phys Chem Chem Phys 20:1173–1180. https://doi.org/10.1039/c7cp07576f

    Article  CAS  Google Scholar 

  174. Lapauw T, Tunca B, Potashnikov D, Pesach A, Ozeri O, Vleugels J, Lambrinou K (2018) The double solid solution (Zr, Nb)(2)(Al, Sn)C MAX phase: a steric stability approach. Sci Rep 8:12801. https://doi.org/10.1038/s41598-018-31271-2

    Article  CAS  Google Scholar 

  175. Nechiche M, Gauthier-Brunet V, Mauchamp V, Joulain A, Cabioc’h T, Milhet X, Chartier P, Dubois S (2017) Synthesis and characterization of a new (Ti1-epsilon, Cu-epsilon)(3)(Al, Cu)C-2 MAX phase solid solution. J Eur Ceram Soc 37:459–466. https://doi.org/10.1016/j.jeurceramsoc.2016.09.028

    Article  CAS  Google Scholar 

  176. Griseri M, Tunca B, Huang SG, Dahlqvist M, Rosen J, Lu J, Persson POA, Popescu L et al (2020) Ta-based 413 and 211 MAX phase solid solutions with Hf and Nb. J Eur Ceram Soc 40:1829–1838. https://doi.org/10.1016/j.jeurceramsoc.2019.12.052

    Article  CAS  Google Scholar 

  177. Tunca B, Lapauw T, Karakulina OM, Batuk M, Cabioc’h T, Hadermann J, Delville R, Lambrinou K et al (2017) Synthesis of MAX phases in the Zr–Ti–Al–C system. Inorg Chem 56:3489–3498. https://doi.org/10.1021/acs.inorgchem.6b03057

    Article  CAS  Google Scholar 

  178. Halim J, Palisaitis J, Lu J, Thornberg J, Moon EJ, Precner M, Eklund P, Persson POA et al (2018) Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)(2)AIC MAX phase. ACS Appl Nano Mater 1:2455–2460. https://doi.org/10.1021/acsanm.8b00332

    Article  CAS  Google Scholar 

  179. Dubois S, Bei GP, Tromas C, Gauthier-Brunet V, Gadaud P (2010) Synthesis, microstructure, and mechanical properties of Ti3Sn(1-x)AlxC2 MAX phase solid solutions. Int J Appl Ceram Technol 7:719–729. https://doi.org/10.1111/j.1744-7402.2010.02554.x

    Article  CAS  Google Scholar 

  180. Yu WB, Li SB, Sloof WG (2010) Microstructure and mechanical properties of a Cr2Al(Si)C solid solution. Mater Sci Eng A Struct Mater Prop Microstruct Process 527:5997–6001. https://doi.org/10.1016/j.msea.2010.05.093

    Article  CAS  Google Scholar 

  181. Dahlqvist M, Lu J, Meshkian R, Tao QZ, Hultman L, Rosen J (2017) Prediction and synthesis of a family of atomic laminate phases with Kagome-like and in-plane chemical ordering. Sci Adv 3:e1700642. https://doi.org/10.1126/sciadv.1700642

    Article  CAS  Google Scholar 

  182. Meshkian R, Tao QZ, Dahlqvist M, Lu J, Hultman L, Rosen J (2017) Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater 125:476–480. https://doi.org/10.1016/j.actamat.2016.12.008

    Article  CAS  Google Scholar 

  183. Meshkian R, Dahlqvist M, Lu J, Wickman B, Halim J, Thornberg J, Tao QZ, Li SX et al (2018) W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv Mater 30:1706409. https://doi.org/10.1002/adma.201706409

    Article  CAS  Google Scholar 

  184. Lu J, Thore A, Meshkian R, Tao Q, Hultman L, Rosen J (2017) Theoretical and experimental exploration of a novel in-plane chemically ordered (Cr2/3M1/3)(2)AIC i-MAX Phase with M = Sc and Y. Cryst Growth Des 17:5704–5711. https://doi.org/10.1021/acs.cgd.7b00642

    Article  CAS  Google Scholar 

  185. Petruhins A, Dahlqvist M, Lu J, Hultman L, Rosen J (2020) Theoretical prediction and experimental verification of the chemically ordered atomic-laminate i-MAX phases (Cr2/3Sc1/3)(2)GaC and (Mn2/3Sc1/3)(2)GaC. Cryst Growth Des 20:55–61. https://doi.org/10.1021/acs.cgd.9b00449

    Article  CAS  Google Scholar 

  186. Tao QZ, Dahlqvist M, Lu J, Kota S, Meshkian R, Halim J, Palisaitis J, Hultman L et al (2017) Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat Commun 8:14949. https://doi.org/10.1038/ncomms14949

    Article  Google Scholar 

  187. Liu ZM, Wu ED, Wang JM, Qian YH, Xiang HM, Li XC, Jin QQ, Sun GG et al (2014) Crystal structure and formation mechanism of (Cr2/3Ti1/3)(3)A1C(2) MAX phase. Acta Mater 73:186–193. https://doi.org/10.1016/j.actamat.2014.04.006

    Article  CAS  Google Scholar 

  188. Anasori B, Halim J, Lu J, Voigt CA, Hultman L, Barsoum MW (2015) Mo2TiAlC2: a new ordered layered ternary carbide. Scr Mater 101:5–7. https://doi.org/10.1016/j.scriptamat.2014.12.024

    Article  CAS  Google Scholar 

  189. Thornberg J, Halim J, Lu J, Meshkian R, Palisaitis J, Hultman L, Persson POA, Rosen J (2019) Synthesis of (V2/3Sc1/3)(2)AlC i-MAX phase and V2-xC MXene scrolls. Nanoscale 11:14720–14726. https://doi.org/10.1039/c9nr02354b

    Article  CAS  Google Scholar 

  190. Persson I, el Ghazaly A, Tao QZ, Halim J, Kota S, Darakchieva V, Palisaitis J, Barsoum MW et al (2018) Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 14:1703676. https://doi.org/10.1002/smll.201703676

    Article  CAS  Google Scholar 

  191. Mockute A, Tao Q, Dahlqvist M, Lu J, Calder S, Caspi EN, Hultman L, Rosen J (2019) Materials synthesis, neutron powder diffraction, and first-principles calculations of (MoxSc1-x)(2)AlC i-MAX phase used as parent material for MXene derivation. Phys Rev Mater 3:113607. https://doi.org/10.1103/PhysRevMaterials.3.113607

    Article  CAS  Google Scholar 

  192. Zhang H, Wang XH, Ma YH, Sun LC, Zheng LY, Zhou YC (2012) Crystal structure determination of nanolaminated Ti5Al2C3 by combined techniques of XRPD, TEM and ab initio calculations. J Adv Ceram 1:268–273. https://doi.org/10.1007/s40145-012-0034-9

    Article  CAS  Google Scholar 

  193. Wang XH, Zhang H, Zheng LY, Ma YH, Lu XP, Sun YJ, Zhou YC (2012) Ti5Al2C3: a new ternary carbide belonging to MAX phases in the Ti–Al–C system. J Am Ceram Soc 95:1508–1510. https://doi.org/10.1111/j.1551-2916.2012.05158.x

    Article  CAS  Google Scholar 

  194. Wilhelmsson O, Palmquist JP, Lewin E, Emmerlich J, Eklund P, Persson POA, Hogberg H, Li S et al (2006) Deposition and characterization of ternary thin films within the Ti–Al–C system by DC magnetron sputtering. J Cryst Growth 291:290–300. https://doi.org/10.1016/j.jcrysgro.2006.03.008

    Article  CAS  Google Scholar 

  195. Lane NJ, Naguib M, Lu J, Hultman L, Barsoum MW (2012) Structure of a new bulk Ti5Al2C3 MAX phase produced by the topotactic transformation of Ti2AlC. J Eur Ceram Soc 32:3485–3491. https://doi.org/10.1016/j.jeurceramsoc.2012.03.035

    Article  CAS  Google Scholar 

  196. Zhou YC, Meng FL, Zhang J (2008) New MAX-phase compounds in the V–Cr–Al–C system. J Am Ceram Soc 91:1357–1360. https://doi.org/10.1111/j.1551-2916.2008.02279.x

    Article  CAS  Google Scholar 

  197. Palmquist JP, Li S, Persson POA, Emmerlich J, Wilhelmsson O, Hogberg H, Katsnelson MI, Johansson B et al (2004) M(n + 1)AX(n) phases in the Ti–Si–C system studied by thin-film synthesis and ab initio calculations. Phys Rev B 70:165401. https://doi.org/10.1103/PhysRevB.70.165401

    Article  CAS  Google Scholar 

  198. Högberg H, Eklund P, Emmerlich J, Birch J, Hultman L (2005) Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering. J Mater Res 20:779–782. https://doi.org/10.1557/JMR.2005.0105

    Article  CAS  Google Scholar 

  199. Lapauw T, Tunca B, Cabioc’h T, Lu J, Persson POA, Lambrinou K, Vleugels J (2016) Synthesis of MAX Phases in the Hf–Al–C System. Inorg Chem 55:10922–10927. https://doi.org/10.1021/acs.inorgchem.6b01398

    Article  CAS  Google Scholar 

  200. Scabarozi TH, Hettinger JD, Lofland SE, Lu J, Hultman L, Jensen J, Eklund P (2011) Epitaxial growth and electrical-transport properties of Ti7Si2C5 thin films synthesized by reactive sputter-deposition. Scr Mater 65:811–814. https://doi.org/10.1016/j.scriptamat.2011.07.038

    Article  CAS  Google Scholar 

  201. Hu C, Lai CC, Tao Q, Lu J, Halim J, Sun L, Zhang J, Yang J et al (2015) Mo2Ga2C: a new ternary nanolaminated carbide. Chem Commun 51:6560–6563. https://doi.org/10.1039/c5cc00980d

    Article  CAS  Google Scholar 

  202. Jin S, Wang ZT, Du YQ, Hu QK, Yu JG, Zhou AG (2020) Hot-pressing sintering of double-a-layer MAX phase Mo2Ga2C. J Inorg Mater 35:41–45. https://doi.org/10.15541/jim20190296

    Article  Google Scholar 

  203. Fashandi H, Lai CC, Dahlqvist M, Lu J, Rosen J, Hultman L, Greczynski G, Andersson M et al (2017) Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2. Chem Commun 53:9554–9557. https://doi.org/10.1039/c7cc04701k

    Article  CAS  Google Scholar 

  204. Chen HX, Yang DL, Zhang QH, Jin SF, Guo LW, Deng J, Li XD, Chen XL (2019) A series of MAX phases with MA-triangular-prism bilayers and elastic properties. Angew Chem-Int Edit 58:4576–4580. https://doi.org/10.1002/anie.201814128

    Article  CAS  Google Scholar 

  205. Zhang H, Hu T, Wang XH, Li ZJ, Hu MM, Wu ED, Zhou YC (2015) Discovery of carbon-vacancy ordering in Nb4AlC3-x under the guidance of first-principles calculations. Sci Rep 5:14192. https://doi.org/10.1038/srep14192

    Article  CAS  Google Scholar 

  206. Etzkorn J, Ade M, Hillebrecht H (2007) V2AlC, V4AlC3-x (x approximate to 0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure. Inorg Chem 46:7646–7653. https://doi.org/10.1021/ic700382y

    Article  CAS  Google Scholar 

  207. Ashton M, Hennig RG, Broderick SR, Rajan K, Sinnott SB (2016) Computational discovery of stable M(2)AX phases. Phys Rev B 94:054116. https://doi.org/10.1103/PhysRevB.94.054116

    Article  CAS  Google Scholar 

  208. Anasori B, Dahlqvist M, Halim J, Moon EJ, Lu J, Hosler BC, Caspi EN, May SJ et al (2015) Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J Appl Phys 118:094304. https://doi.org/10.1063/1.4929640

    Article  CAS  Google Scholar 

  209. Dahlqvist M, Rosen J (2020) Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases. Nanoscale 12:785–794. https://doi.org/10.1039/c9nr08675g

    Article  CAS  Google Scholar 

  210. Konovalikhin SV, Mingazov AI, Guda SA, Kovalev DY (2019) Estimating the stability of the structure of MAX phases of Ti3AlC2-xBx composition on the basis of quantum-chemical calculations. Russ J Phys Chem A 93:1277–1280. https://doi.org/10.1134/s0036024419070112

    Article  CAS  Google Scholar 

  211. Burr PA, Horlait D, Lee WE (2017) Experimental and DFT investigation of (Cr, Ti)(3)AlC2 MAX phases stability. Mater Res Lett 5:144–157. https://doi.org/10.1080/21663831.2016.1222598

    Article  CAS  Google Scholar 

  212. Chen LL, Deng ZX, Li M, Li P, Chang KK, Huang F, Du SY, Huang Q (2020) Phase diagrams of Novel MAX phases. J Inorg Mater 35:35–40. https://doi.org/10.15541/jim20190184

    Article  Google Scholar 

  213. Hossein-Zadeh M, Mirzaee O, Mohammadian-Semnani H, Razavi M (2019) Microstructure investigation of V2AlC MAX phase synthesized through spark plasma sintering using two various sources V and V2O5 as the starting materials. Ceram Int 45:23902–23916. https://doi.org/10.1016/j.ceramint.2019.07.236

    Article  CAS  Google Scholar 

  214. Scheibe B, Kupka V, Peplinska B, Jarek M, Tadyszak K (2019) the influence of oxygen concentration during MAX phases (Ti3AlC2) preparation on the –Al2O3 microparticles content and specific surface area of multilayered MXenes (Ti3C2Tx). Materials 12:353. https://doi.org/10.3390/ma12030353

    Article  CAS  Google Scholar 

  215. Duan XM, Shen L, Jia DC, Zhou Y, van der Zwaag S, Sloof WG (2015) Synthesis of high-purity, isotropic or textured Cr2AlC bulk ceramics by spark plasma sintering of pressure-less sintered powders. J Eur Ceram Soc 35:1393–1400. https://doi.org/10.1016/j.jeurceramsoc.2014.11.008

    Article  CAS  Google Scholar 

  216. Gorshkov VA, Miloserdov PA, Karpov AV, Shchukin AS, Sytschev AE (2019) Investigation of the composition and properties of a Cr2AlC MAX phase-based material prepared by metallothermic SHS. Phys Met Metallogr 120:471–475. https://doi.org/10.1134/s0031918x19050041

    Article  CAS  Google Scholar 

  217. Akhlaghi M, Tayebifard SA, Salahi E, Asl MS, Schmidt G (2018) Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture. Ceram Int 44:9671–9678. https://doi.org/10.1016/j.ceramint.2018.02.195

    Article  CAS  Google Scholar 

  218. Hu CF, Zhang J, Bao YW, Wang JY, Li MS, Zhou YC (2008) In-situ reaction synthesis and decomposition of Ta2AlC. Int J Mater Res 99:8–13. https://doi.org/10.3139/146.101598

    Article  CAS  Google Scholar 

  219. Hu CF, He LF, Liu MY, Wang XH, Wang JY, Li MS, Bao YW, Zhou YC (2008) in situ reaction synthesis and mechanical properties of V2AlC. J Am Ceram Soc 91:4029–4035. https://doi.org/10.1111/j.1551-2916.2008.02774.x

    Article  CAS  Google Scholar 

  220. Hasegawa G, Kawahara K, Shima K, Inada M, Enomoto N, Hayashi K (2019) Characterization of an AX compound derived from Ti2SC MAX phase. Eur J Inorg Chem 2019:2312–2317. https://doi.org/10.1002/ejic.201900311

    Article  CAS  Google Scholar 

  221. Bei GP, Gauthier-Brunet V, Tromas C, Dubois S (2012) Synthesis, characterization, and intrinsic hardness of layered nanolaminate Ti3AlC2 and Ti3Al0.8Sn0.2C2 solid solution. J Am Ceram Soc 95:102–107. https://doi.org/10.1111/j.1551-2916.2011.04846.x

    Article  CAS  Google Scholar 

  222. Tian W, Vanmeensel K, Wang P, Zhang G, Li Y, Vleugels J, Van der Biest O (2007) Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering. Mater Lett 61:4442–4445. https://doi.org/10.1016/j.matlet.2007.02.023

    Article  CAS  Google Scholar 

  223. Kozak K, Bucko MM, Chlubny L, Lis J, Antou G, Chotard T (2019) Influence of composition and grain size on the damage evolution in MAX phases investigated by acoustic emission. Mater Sci Eng A Struct Mater Prop Microstruct Process 743:114–122. https://doi.org/10.1016/j.msea.2018.11.063

    Article  CAS  Google Scholar 

  224. Hu C, Sakka Y, Grasso S, Nishimura T, Guo S, Tanaka H (2011) Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness. Scr Mater 64:765–768. https://doi.org/10.1016/j.scriptamat.2010.12.045

    Article  CAS  Google Scholar 

  225. Parrikar PN, Benitez R, Gao H, Radovic M, Shukla A (2017) The effect of grain size on deformation and failure of Ti2AlC MAX phase under thermo-mechanical loading. Exp Mech 57:675–685. https://doi.org/10.1007/s11340-017-0264-4

    Article  CAS  Google Scholar 

  226. Griseri M, Tunca B, Lapauw T, Huang SG, Popescu L, Barsoum MW, Lambrinou K, Vleugels J (2019) Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase. J Eur Ceram Soc 39:2973–2981. https://doi.org/10.1016/j.jeurceramsoc.2019.04.021

    Article  CAS  Google Scholar 

  227. Sun ZM (2013) Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 56:143–166. https://doi.org/10.1179/1743280410y.0000000001

    Article  Google Scholar 

  228. Gilbert CJ, Bloyer DR, Barsoum MW, El-Raghy T, Tomsia AP, Ritchie RO (2000) Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2. Scr Mater 42:761–767. https://doi.org/10.1016/S1359-6462(99)00427-3

    Article  CAS  Google Scholar 

  229. Sun ZM, Murugaiah A, Zhen T, Zhou A, Barsoum MW (2005) Microstructure and mechanical properties of porous Ti3SiC2. Acta Mater 53:4359–4366. https://doi.org/10.1016/j.actamat.2005.05.034

    Article  CAS  Google Scholar 

  230. Radovic M, Barsoum MW, El-Raghy T, Wiederhorn SM, Luecke WE (2002) Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension. Acta Mater 50:1297–1306. https://doi.org/10.1016/S1359-6454(01)00424-4

    Article  CAS  Google Scholar 

  231. El-Raghy T, Barsoum MW, Zavaliangos A, Kalidindi SR (1999) Processing and mechanical properties of Ti3SiC2: II, effect of grain size and deformation temperature. J Am Ceram Soc 82:2855–2860. https://doi.org/10.1111/j.1151-2916.1999.tb02167.x

    Article  CAS  Google Scholar 

  232. Fraczkiewicz M, Zhou AG, Barsoum MW (2006) Mechanical damping in porous Ti3SiC2. Acta Mater 54:5261–5270. https://doi.org/10.1016/j.actamat.2006.06.052

    Article  CAS  Google Scholar 

  233. Parrikar PN, Benitez R, Radovic M, Shukla A (2017) Effect of microstructure on mechanical response of MAX phases. In: Ralph WC, Singh R, Tandon G, Thakre PR, Zavattieri P, Zhu Y (eds) Mechanics of composite and multi-functional materials. Springer, Berlin, pp 171–175

    Google Scholar 

  234. Lapauw T, Swarnakar AK, Tunca B, Lambrinou K, Vleugels J (2018) Nanolaminated ternary carbide (MAX phase) materials for high temperature applications. Int J Refract Met Hard Mater 72:51–55. https://doi.org/10.1016/j.ijrmhm.2017.11.038

    Article  CAS  Google Scholar 

  235. Radovic M, Barsoum MW, El-Raghy T, Wiederhorn SM (2003) Tensile creep of coarse-grained Ti3SiC2 in the 1000–1200 °C temperature range. J Alloys Compd 361:299–312. https://doi.org/10.1016/s0925-8388(03)00435-3

    Article  CAS  Google Scholar 

  236. Radovic M, Barsoum MW, El-Raghy T, Wiederhorn S (2001) Tensile creep of fine grained (3–5 μm) Ti3SiC2 in the 1000–1200 °C temperature range. Acta Mater 49:4103–4112. https://doi.org/10.1016/S1359-6454(01)00243-9

    Article  CAS  Google Scholar 

  237. Wan DT, Zhou YC, Bao YW, Yan CK (2006) In situ reaction synthesis and characterization of Ti3Si(Al)C-2/SiC composites. Ceram Int 32:883–890. https://doi.org/10.1016/j.ceramint.2005.07.004

    Article  CAS  Google Scholar 

  238. Salvo C, Chicardi E, Garcia-Garrido C, Jimenez JA, Aguilar C, Usuba J, Mangalaraja RV (2019) The influence of mechanical activation process on the microstructure and mechanical properties of bulk Ti2AlN MAX phase obtained by reactive hot pressing. Ceram Int 45:17793–17799. https://doi.org/10.1016/j.ceramint.2019.05.350

    Article  CAS  Google Scholar 

  239. Song GM, Xu Q, Sloof WG, Li SB, Svd Zwaag (2009) Toughening of a ZrC particle-reinforced Ti3AIC2 composite. In: Ohji T, Wereszczak A (eds) Mechanical properties and processing of ceramic binary, ternary, and composite systems: ceramic engineering and science proceedings, vol 29. Wiley, New York, pp 31–39

    Chapter  Google Scholar 

  240. Yang J, Pan L, Gu W, Qiu T, Zhang Y, Zhu S (2012) Microstructure and mechanical properties of in situ synthesized (TiB2 + TiC)/Ti3SiC2 composites. Ceram Int 38:649–655. https://doi.org/10.1016/j.ceramint.2011.06.066

    Article  CAS  Google Scholar 

  241. Peng LM (2007) Preparation and properties of ternary Ti3AlC2 and its composites from Ti–Al–C powder mixtures with ceramic particulates. J Am Ceram Soc 90:1312–1314. https://doi.org/10.1111/j.1551-2916.2007.01517.x

    Article  CAS  Google Scholar 

  242. Pan W, Shi SL (2007) Microstructure and mechanical properties of Ti3SiC2/3Y-TZP composites by spark plasma sintering. J Eur Ceram Soc 27:413–417. https://doi.org/10.1016/j.jeurceramsoc.2006.05.072

    Article  CAS  Google Scholar 

  243. Chen XH, Bei GP (2017) toughening mechanisms in nanolayered MAX phase ceramics—a review. Materials 10:366. https://doi.org/10.3390/ma10040366

    Article  CAS  Google Scholar 

  244. Hu CF, Sakka Y, Grasso S, Suzuki T, Tanaka H (2011) Tailoring Ti3SiC2 ceramic via a strong magnetic field alignment method followed by spark plasma sintering. J Am Ceram Soc 94:742–748. https://doi.org/10.1111/j.1551-2916.2010.04186.x

    Article  CAS  Google Scholar 

  245. Lapauw T, Vanmeensel K, Lambrinou K, Vleugels J (2016) A new method to texture dense Mn + 1AXn ceramics by spark plasma deformation. Scr Mater 111:98–101. https://doi.org/10.1016/j.scriptamat.2015.08.023

    Article  CAS  Google Scholar 

  246. Sato K, Mishra M, Hirano H, Suzuki TS, Sakka Y (2014) Fabrication of textured Ti3SiC2 ceramic by slip casting in a strong magnetic field and pressureless sintering. J Ceram Soc Jpn 122:817–821. https://doi.org/10.2109/jcersj2.122.817

    Article  CAS  Google Scholar 

  247. Hu CF, Sakka Y, Tanaka H, Nishimura T, Grasso S (2011) Fabrication of textured Nb4AlC3 ceramic by slip casting in a strong magnetic field and spark plasma sintering. J Am Ceram Soc 94:410–415. https://doi.org/10.1111/j.1551-2916.2010.04096.x

    Article  CAS  Google Scholar 

  248. Zhang HB, Hu CF, Sato K, Grasso S, Estili M, Guo SQ, Morita K, Yoshida H et al (2015) Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties. J Eur Ceram Soc 35:393–397. https://doi.org/10.1016/j.jeurceramsoc.2014.08.026

    Article  CAS  Google Scholar 

  249. El-Raghy T, Blau P, Barsoum MW (2000) Effect of grain size on friction and wear behavior of Ti3SiC2. Wear 238:125–130. https://doi.org/10.1016/S0043-1648(99)00348-8

    Article  CAS  Google Scholar 

  250. (2014) Summary of MAX phase synthesis conditions. https://wenku.baidu.com/view/e343763652ea551810a68790.html. Accessed 4 Jan 2014 (in Chinese)

  251. Chen ZW, Li ZY, Li JJ, Liu CB, Lao CS, Fu YL, Liu CY, Li Y et al (2019) 3D printing of ceramics: a review. J Eur Ceram Soc 39:661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  CAS  Google Scholar 

  252. Krinitcyn M, Fu ZW, Harris J, Kostikov K, Pribytkov GA, Greil P, Travitzky N (2017) laminated object manufacturing of in situ synthesized MAX-phase composites. Ceram Int 43:9241–9245. https://doi.org/10.1016/j.ceramint.2017.04.079

    Article  CAS  Google Scholar 

  253. Carrijo MMM, Lorenz H, Filbert-Demut I, Barra G, Hotza D, Yin XW, Greil P, Travitzky N (2016) Fabrication of Ti3SiC2-based composites via three-dimensional printing: Influence of processing on the final properties. Ceram Int 42:9557–9564. https://doi.org/10.1016/j.ceramint.2016.03.036

    Article  CAS  Google Scholar 

  254. Dermeik B, Travitzky N (2020) Laminated object manufacturing of ceramic-based materials. Adv Eng Mater. https://doi.org/10.1002/adem.202000256

    Article  Google Scholar 

  255. Spencer CB (2010) Fiber-reinforced Ti3SiC2 and Ti2AlC mAX phase composites. Master Dissertation, Drexel University

  256. Spencer CB, Cordoba JM, Obando N, Sakulich A, Radovic M, Oden M, Hultman L, Barsoum MW (2011) Phase evaluation in Al2O3 fiber-reinforced Ti2AlC during sintering in the 1300 °C–1500 °C temperature range. J Am Ceram Soc 94:3327–3334. https://doi.org/10.1111/j.1551-2916.2011.04612.x

    Article  CAS  Google Scholar 

  257. Lagos MA, Pellegrini C, Agote I, Azurmendi N, Barcena J, Parco M, Silvestroni L, Zoli L et al (2019) Ti3SiC2–Cf composites by spark plasma sintering: processing, microstructure and thermo-mechanical properties. J Eur Ceram Soc 39:2824–2830. https://doi.org/10.1016/j.jeurceramsoc.2019.03.037

    Article  CAS  Google Scholar 

  258. Naik Parrikar P, Gao H, Radovic M, Shukla A (2015) Static and dynamic thermo-mechanical behavior of Ti2AlC MAX phase and fiber reinforced Ti2AlC Composites. In: Song B, Casem D, Kimberley J (eds) dynamic behavior of materials, volume 1, conference proceedings of the society for experimental mechanics series. Springer, Berlin, pp 9–14

  259. Li K, Kashkarov E, Syrtanov M, Sedanova E, Ivashutenko A, Lider A, Fan P, Yuan DQ et al (2020) Preceramic paper-derived SiCf/SiCp composites obtained by spark plasma sintering: processing, microstruct mechanical properties. Materials 13:607. https://doi.org/10.3390/ma13030607

    Article  CAS  Google Scholar 

  260. Guo SQ (2016) Improvement of mechanical properties of SiC(SCS-6) fibre-reinforced Ti3AlC2 matrix composites with Ti barrier layer. J Eur Ceram Soc 36:1349–1358. https://doi.org/10.1016/j.jeurceramsoc.2015.12.039

    Article  CAS  Google Scholar 

  261. Guo SQ, Hu CF, Gao H, Tanaka Y, Kagawa Y (2015) SiC(SCS-6) fiber-reinforced Ti3AlC2 matrix composites: interfacial characterization and mechanical behavior. J Eur Ceram Soc 35:1375–1384. https://doi.org/10.1016/j.jeurceramsoc.2014.11.034

    Article  CAS  Google Scholar 

  262. Zoli L, Vinci A, Silvestroni L, Sciti D, Reece M, Grasso S (2017) Rapid spark plasma sintering to produce dense UHTCs reinforced with undamaged carbon fibres. Mater Des 130:1–7. https://doi.org/10.1016/j.matdes.2017.05.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (Grant No. 19-19-00192). The authors also acknowledge Tomsk Polytechnic University Competitiveness Enhancement Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Lyu or E. B. Kashkarov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, J., Kashkarov, E.B., Travitzky, N. et al. Sintering of MAX-phase materials by spark plasma and other methods. J Mater Sci 56, 1980–2015 (2021). https://doi.org/10.1007/s10853-020-05359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05359-y

Navigation