Skip to main content
Log in

High-Temperature Synthesis of Cast Materials Based on the MAX Phase Cr2AlC Using CaCrO4 + Al + C Mixtures

  • Published:
Inorganic Materials Aims and scope

Abstract—

Experimental data are presented on the high-temperature synthesis of cast composite materials in the Cr–Al–C system with different relative amounts of the MAX phase Cr2AlC and chromium carbides and aluminides. The experiments were carried out in multipurpose self-propagating high-temperature synthesis (SHS) reactors at an argon pressure p = 5 MPa. The starting mixtures consisted of calcium chromate (CaCrO4), aluminum (ASD-1), and carbon powders. It has been shown that varying the percentage of carbon in the starting mixture may have a significant effect on the synthesis process and the phase composition and microstructure of the final products. It has been found that, in the case of the stoichiometric starting mixture composition, the synthesis yields cast composite materials consisting predominantly of the MAX phase Cr2AlC and containing the lower chromium carbide Cr7C3 and the chromium aluminide Cr5Al8. The addition of excess (superstoichiometric) carbon to the starting mixture leads to an increase in the percentage of the MAX phase Cr2AlC in the synthesis product, disappearance of the chromium aluminide Cr5Al8, and the formation of the higher chromium carbide Cr3C2 instead of the lower carbide. The final synthesis products have been characterized by X-ray diffraction and local microstructural analysis. The structure and composition of the synthesis products obtained under various conditions have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kieffer, R. and Benesovsky, F., Hartmetalle, Vienna: Springer, 1965. Translated under the title Tverdye materialy, Moscow: Metallurgiya, 1968, p. 384.

  2. Rudneva, V.V. and Galevskii, G.V., Investigation of thermal oxidation resistance of nanopowders of refractory carbides and borides, Russ. J. Non-Ferrous Met., 2007, no. 2, pp. 143–147.

  3. Nozdrin, I.V., Galevskii, G.V., Shiryaeva, L.S., and Rudneva, V.V., Structure and properties of nickel/chromium carbonitride nanopowder composite coatings, Nanoinzheneriya, 2013, no. 7(25), pp. 36–42.

  4. Guilemagy, J.M., Espallargas, N., Suegama, P.H., and Benedetti, A.V., Comparative study of Cr3C2–NiCr coating, Corros. Sci., 2006, vol. 48, pp. 2998–3013.

    Article  Google Scholar 

  5. Barsoum, M.W., The MAX phases: a new class of solids: thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, pp. 201–281.

    Article  CAS  Google Scholar 

  6. Hettinger, J.D., Lofland, S.E., Finkel, P., Meehan, T., Palma, J., Harrell, K., Gupta, S., Ganguly, A., El-Raghy, T., and Barsoum, M.W., Electrical transport, thermal transport, and elastic properties of M2AlC (M = Ti, Cr, Nb, and V), Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, no. 11, paper 115 120.

  7. Tian, W.B., Wang, P.L., Zhang, G., Kan, Y., Li, Y., and Yan, D., Synthesis and thermal and electrical properties of bulk Cr2AlC, Scr. Mater., 2006, vol. 54, pp. 841–846.

    Article  CAS  Google Scholar 

  8. Lin, Z., Zhou, Y., and Li, M., Synthesis, microstructure, and property of Cr2AlC, J. Mater. Sci. Technol., 2007, vol. 23, no. 6, pp. 721–746.

    CAS  Google Scholar 

  9. Schneider, J.M., Sun, Z., Mertens, R., Uestel, F., and Ahuja, R., Ab-initio calculations and experimental determination of the structure of Cr2AlC, Solid State Commun., 2004, vol. 130, pp. 445–449.

    Article  CAS  Google Scholar 

  10. Tian, W., Vanmeensel, K., Wang, P., Zhang, G., Li, Y., Vleugels, J., and Van der Biest, O., Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering, Mater. Lett., 2007, vol. 61, pp. 4442–4445.

    Article  CAS  Google Scholar 

  11. Xiao, L.O., Li, S.B., Song, G., and Sloof, W.G., Synthesis and thermal stability of Cr2AlC, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 1497–1502.

    Article  CAS  Google Scholar 

  12. Panigrahi, B.B., Chu, M.-C., Kim Y.-Il, Cho, S.-J, and Gracio, J.J., Reaction synthesis and pressureless sintering of Cr2AlC powder, J. Am. Ceram. Soc., 2010, vol. 93, no. 6, pp. 1530–1533.

    CAS  Google Scholar 

  13. Xiao, D., Zhu, J., Wang, F., and Tang, Y., Synthesis of nano sized Cr2AlC powders by molten salt method, J. Nanosci. Nanotechnol., 2015, vol. 15, pp. 7341–7345.

    Article  CAS  Google Scholar 

  14. Duan, X., Shen, L., Jia, D., Zhou, Y., Zwaag, S., and Sloof, W.G., Synthesis of high-purity, isotropic or textured Cr2AlC bulk ceramics by spark plasma sintering of pressure-less sintered powders, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1393–1400.

    Article  CAS  Google Scholar 

  15. Tian, W.B., Sun, Z.M., Du, Y., and Hashimoto, H., Synthesis reactions of Cr2AlC from Cr–Al4C3–C by pulse discharge sintering, Mater. Lett., 2008, vol. 62, pp. 3852–3855.

    Article  CAS  Google Scholar 

  16. Tian, W.B., Wang, P.L., Kana, Y.M., Zhang, G.J., Li, Y.X., and Yan, D.S., Phase formation sequence of Cr2AlC ceramics starting from Cr–Al–C powders, Mater. Sci. Eng., A, 2007, vol. 443, pp. 229–234.

    Article  Google Scholar 

  17. Ying, G., He, X., Li, M., Li, Y., and Du, S., Synthesis and mechanical properties of nano-layered composite, J. Alloys Compd., 2010, vol. 506, pp. 734–738.

    Article  CAS  Google Scholar 

  18. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2017, vol. 62, no. 4, pp. 203–239.

    Article  CAS  Google Scholar 

  19. Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Promising Materials and Technologies of Self-Propagating High-Temperature Synthesis), Moscow: Izdatel’skii Dom Mosk. Inst. Stali i Splavov, 2011, p. 378.

  20. Gorshkov, V.A., Miloserdov, P.A., Luginina, M.A., Sachkova, N.V., and Belikova, A.F., High-temperature synthesis of a cast material with a maximum content of the MAX phase Cr2AlC, Inorg. Mater., 2017, vol. 53, no. 3, pp. 271–277.

    Article  CAS  Google Scholar 

  21. Gorshkov, V.A., Miloserdov, P.A., Sachkova, N.V., Luginina, M.A., and Yukhvid, V.I., Self-propagating high-temperature synthesis metallurgy of cast materials based on the MAX phase Cr2AlC, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funktsion. Pokrytiya, 2017, no. 2, pp. 47–54.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 19-08-00053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gorshkov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, V.A., Miloserdov, P.A. & Sachkova, N.V. High-Temperature Synthesis of Cast Materials Based on the MAX Phase Cr2AlC Using CaCrO4 + Al + C Mixtures. Inorg Mater 56, 321–327 (2020). https://doi.org/10.1134/S0020168520030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520030048

Keywords:

Navigation