Skip to main content

Advertisement

Log in

Development of a novel 18F-labeled small molecule probe for PET imaging of mesenchymal epithelial transition receptor expression

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The mesenchymal epithelial transition factor (c-Met) is frequently overexpressed in numerous cancers and has served as a validated anticancer target. Inter- and intra-tumor heterogeneity of c-Met, however, challenges the use of anti-MET therapies, highlighting an urgent need to develop an alternative tool for visualizing whole-body c-Met expression quantitatively and noninvasively. Here we firstly reported an 18F labeled, small-molecule quinine compound-based PET probe, 1-(4-(5-amino-7-(trifluoromethyl) quinolin-3-yl) piperazin-1-yl)-2-(fluoro-[18F]) propan-1-one, herein referred as [18F]-AZC.

Methods

[18F]-AZC was synthesized via a one-step substitution reaction and characterized by radiochemistry methods. [18F]-AZC specificity and affinity toward c-Met were assessed by cell uptake assay, with or without cold compound [19F]-AZC or commercial c-Met inhibitor blocking. MicroPET/CT imaging and biodistribution studies were conducted in subcutaneous murine xenografts of glioma. Additionally, [18F]-AZC was then further evaluated in orthotopic glioma xenografts, by microPET/CT imaging accompanied with MRI and autoradiography for co-registration of the tumor. Immunofluorescence staining was also carried out to qualitatively evaluate the c-Met expression in tumor tissue, co-localizes with H&E staining.

Results

This probe shows easy radiosynthesis, high stability in vitro and in vivo, high targeting affinity, and favorable lipophilicity and brain transport coefficient. [18F]-AZC demonstrates excellent tumor imaging properties in vivo and can delineate c-Met positive glioma specifically at 1 h after intravenous injection of the probe. Moreover, favorable correlation was observed between the [18F]-AZC accumulation and the amount of c-Met expression in tumor.

Conclusion

This novel imaging probe could be applied as a valuable tool for management of anti-c-Met therapies in patients in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915–25. https://doi.org/10.1038/nrm1261.

    Article  CAS  PubMed  Google Scholar 

  2. Sattler M, Salgia R. c-Met and hepatocyte growth factor: potential as novel targets in cancer therapy. Curr Oncol Rep. 2007;9:102–8. https://doi.org/10.1007/s11912-007-0005-4.

    Article  CAS  PubMed  Google Scholar 

  3. Uchikawa E, Chen Z, Xiao GY, Zhang X, Bai XC. Structural basis of the activation of c-MET receptor. Nat Commun. 2021;12:4074. https://doi.org/10.1038/s41467-021-24367-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 2011;18:74–82. https://doi.org/10.1038/nm.2577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abounader R, Lal B, Luddy C, Koe G, Davidson B, Rosen EM, et al. In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J. 2002;16:108–10. https://doi.org/10.1096/fj.01-0421fje.

    Article  CAS  PubMed  Google Scholar 

  6. Wallace GCT, Dixon-Mah YN, Vandergrift WA 3rd, Ray SK, Haar CP, Mittendorf AM, et al. Targeting oncogenic ALK and MET: a promising therapeutic strategy for glioblastoma. Metab Brain Dis. 2013;28:355–66. https://doi.org/10.1007/s11011-013-9401-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, Rosen EM, et al. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res. 2000;60:4277–83.

    CAS  PubMed  Google Scholar 

  8. Moriyama T, Kataoka H, Seguchi K, Tsubouchi H, Koono M. Effects of hepatocyte growth factor (HGF) on human glioma cells in vitro: HGF acts as a motility factor in glioma cells. Int J Cancer. 1996;66:678–85. https://doi.org/10.1002/(SICI)1097-0215(19960529)66:5<678::AID-IJC16>3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  9. Mittra ES, Fan-Minogue H, Lin FI, Karamchandani J, Sriram V, Han M, et al. Preclinical efficacy of the anti-hepatocyte growth factor antibody ficlatuzumab in a mouse brain orthotopic glioma model evaluated by bioluminescence, PET, and MRI. Clin Cancer Res. 2013;19:5711–21. https://doi.org/10.1158/1078-0432.CCR-12-1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu X, Newton RC, Scherle PA. Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med. 2010;16:37–45. https://doi.org/10.1016/j.molmed.2009.11.005.

    Article  CAS  PubMed  Google Scholar 

  11. Feldman DR, Einhorn LH, Quinn DI, Loriot Y, Joffe JK, Vaughn DJ, et al. A phase 2 multicenter study of tivantinib (ARQ 197) monotherapy in patients with relapsed or refractory germ cell tumors. Invest New Drugs. 2013;31:1016–22. https://doi.org/10.1007/s10637-013-9934-y.

    Article  CAS  PubMed  Google Scholar 

  12. Santoro A, Rimassa L, Borbath I, Daniele B, Salvagni S, Van Laethem JL, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14:55–63. https://doi.org/10.1016/S1470-2045(12)70490-4.

    Article  CAS  PubMed  Google Scholar 

  13. Wagner AJ, Goldberg JM, Dubois SG, Choy E, Rosen L, Pappo A, et al. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer. 2012;118:5894–902. https://doi.org/10.1002/cncr.27582.

    Article  CAS  PubMed  Google Scholar 

  14. Spigel DR, Ervin TJ, Ramlau RA, Daniel DB, Goldschmidt JH Jr, Blumenschein GR Jr, et al. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2013;31:4105–14. https://doi.org/10.1200/JCO.2012.47.4189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colombo JR, Wein RO. Cabozantinib for progressive metastatic medullary thyroid cancer: a review. Ther Clin Risk Manag. 2014;10:395–404. https://doi.org/10.2147/TCRM.S46041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJM, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med. 2020;383:944–57. https://doi.org/10.1056/NEJMoa2002787.

    Article  CAS  PubMed  Google Scholar 

  17. Wen PY, Schiff D, Cloughesy TF, Raizer JJ, Laterra J, Smitt M, et al. A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol. 2011;13:437–46. https://doi.org/10.1093/neuonc/noq198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kong DS, Song SY, Kim DH, Joo KM, Yoo JS, Koh JS, et al. Prognostic significance of c-Met expression in glioblastomas. Cancer. 2009;115:140–8. https://doi.org/10.1002/cncr.23972.

    Article  PubMed  Google Scholar 

  19. Olmez OF, Cubukcu E, Evrensel T, Kurt M, Avci N, Tolunay S, et al. The immunohistochemical expression of c-Met is an independent predictor of survival in patients with glioblastoma multiforme. Clin Transl Oncol. 2014;16:173–7. https://doi.org/10.1007/s12094-013-1059-4.

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Lal B, Kwon S, Fan X, Saldanha U, Reznik TE, et al. The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res. 2005;65:9355–62. https://doi.org/10.1158/0008-5472.CAN-05-1946.

    Article  CAS  PubMed  Google Scholar 

  21. Scagliotti GV, Novello S, von Pawel J. The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev. 2013;39:793–801. https://doi.org/10.1016/j.ctrv.2013.02.001.

    Article  CAS  PubMed  Google Scholar 

  22. Floresta G, Abbate V. Recent progress in the imaging of c-Met aberrant cancers with positron emission tomography. Med Res Rev. 2022;42:1588–606. https://doi.org/10.1002/med.21885.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin Q, Zhang Y, Fu Z, Hu B, Si Z, Zhao Y, et al. Synthesis and evaluation of (18)F labeled crizotinib derivative [(18)F]FPC as a novel PET probe for imaging c-MET-positive NSCLC tumor. Bioorg Med Chem. 2020;28:115577. https://doi.org/10.1016/j.bmc.2020.115577.

    Article  CAS  PubMed  Google Scholar 

  24. Teh JH, Amgheib A, Fu R, Barnes C, Abrahams J, Ashek A, et al. Evaluation of [(18)F]AlF-EMP-105 for molecular imaging of C-Met. Pharmaceutics. 2023:15. https://doi.org/10.3390/pharmaceutics15071915.

  25. Unterrainer LM, Todica A, Beyer L, Brendel M, Holzgreve A, Kauffmann-Guerrero D, et al. (68)Ga-EMP-100 PET/CT-a novel method for non-invasive assessment of c-MET expression in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2023;50:628–9. https://doi.org/10.1007/s00259-022-05995-3.

    Article  CAS  PubMed  Google Scholar 

  26. Mittlmeier LM, Todica A, Gildehaus FJ, Unterrainer M, Beyer L, Brendel M, et al. (68)Ga-EMP-100 PET/CT-a novel ligand for visualizing c-MET expression in metastatic renal cell carcinoma-first in-human biodistribution and imaging results. Eur J Nucl Med Mol Imaging. 2022;49:1711–20. https://doi.org/10.1007/s00259-021-05596-6.

    Article  CAS  PubMed  Google Scholar 

  27. Cavaliere A, Sun S, Lee S, Bodner J, Li Z, Huang Y, et al. Development of [(89)Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging. 2021;48:383–94. https://doi.org/10.1007/s00259-020-04978-6.

    Article  CAS  PubMed  Google Scholar 

  28. Klingler S, Fay R, Holland JP. Light-induced radiosynthesis of (89)Zr-DFO-Azepin-Onartuzumab for imaging the hepatocyte growth factor receptor. J Nucl Med. 2020;61:1072–8. https://doi.org/10.2967/jnumed.119.237180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fay R, Gut M, Holland JP. Photoradiosynthesis of (68)Ga-labeled HBED-CC-Azepin-MetMAb for immuno-PET of c-MET receptors. Bioconjug Chem. 2019;30:1814–20. https://doi.org/10.1021/acs.bioconjchem.9b00342.

    Article  CAS  PubMed  Google Scholar 

  30. Arulappu A, Battle M, Eisenblaetter M, McRobbie G, Khan I, Monypenny J, et al. c-Met PET imaging detects early-stage locoregional recurrence of basal-like breast cancer. J Nucl Med. 2016;57:765–70. https://doi.org/10.2967/jnumed.115.164384.

    Article  CAS  PubMed  Google Scholar 

  31. Wu C, Tang Z, Fan W, Zhu W, Wang C, Somoza E, et al. In vivo positron emission tomography (PET) imaging of mesenchymal-epithelial transition (MET) receptor. J Med Chem. 2010;53:139–46. https://doi.org/10.1021/jm900803q.

    Article  CAS  PubMed  Google Scholar 

  32. Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res. 2003;63:7345–55.

    CAS  PubMed  Google Scholar 

  33. Dussault I, Bellon SF. From concept to reality: the long road to c-Met and RON receptor tyrosine kinase inhibitors for the treatment of cancer. Anticancer Agents Med Chem. 2009;9:221–9. https://doi.org/10.2174/187152009787313792.

    Article  CAS  PubMed  Google Scholar 

  34. Wu K, Ai J, Liu Q, Chen T, Zhao A, Peng X, et al. Multisubstituted quinoxalines and pyrido[2,3-d]pyrimidines: synthesis and SAR study as tyrosine kinase c-Met inhibitors. Bioorg Med Chem Lett. 2012;22:6368–72. https://doi.org/10.1016/j.bmcl.2012.08.075.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Ai J, Liu G, Geng M, Zhang A. Expeditious one-pot synthesis of C3-piperazinyl-substituted quinolines: key precursors to potent c-Met inhibitors. Org Biomol Chem. 2011;9:5930–3. https://doi.org/10.1039/c1ob05830d.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao A, Gao X, Wang Y, Ai J, Wang Y, Chen Y, et al. Discovery of novel c-Met kinase inhibitors bearing a thieno[2,3-d]pyrimidine or furo[2,3-d]pyrimidine scaffold. Bioorg Med Chem. 2011;19:3906–18. https://doi.org/10.1016/j.bmc.2011.05.038.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Ai J, Wang Y, Chen Y, Wang L, Liu G, et al. Synthesis and c-Met kinase inhibition of 3,5-disubstituted and 3,5,7-trisubstituted quinolines: identification of 3-(4-acetylpiperazin-1-yl)-5-(3-nitrobenzylamino)-7- (trifluoromethyl)quinoline as a novel anticancer agent. J Med Chem. 2011;54:2127–42. https://doi.org/10.1021/jm101340q.

    Article  CAS  PubMed  Google Scholar 

  38. Bu L, Li R, Liu H, Feng W, Xiong X, Zhao H, et al. Intrastriatal transplantation of retinal pigment epithelial cells for the treatment of Parkinson disease: in vivo longitudinal molecular imaging with (18)F-P3BZA PET/CT. Radiology. 2014;272:174–83. https://doi.org/10.1148/radiol.14132042.

    Article  PubMed  Google Scholar 

  39. Liu Y, Hu X, Liu H, Bu L, Ma X, Cheng K, et al. A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med : official Pub, Soc Nucl Med. 2013;54:2132–8. https://doi.org/10.2967/jnumed.113.121533.

    Article  CAS  Google Scholar 

  40. Liu T, Liu C, Xu X, Liu F, Guo X, Li N, et al. Preclinical evaluation and pilot clinical study of Al(18)F-PSMA-BCH for prostate cancer imaging. Journal of nuclear medicine : official publication, Society of. Nuclear Med. 2019; https://doi.org/10.2967/jnumed.118.221671.

  41. Xia Y, Zheng MQ, Holden D, Lin SF, Kapinos M, Ropchan J, et al. Measurement of Bmax and Kd with the glycine transporter 1 radiotracer (1)(8)F-MK6577 using a novel multi-infusion paradigm. J Cereb Blood Flow Metab : official J Intern Soc Cerebral Blood Flow Metab. 2015;35:2001–9. https://doi.org/10.1038/jcbfm.2015.163.

    Article  CAS  Google Scholar 

  42. Duong H, Han M. A multispectral LED array for the reduction of background autofluorescence in brain tissue. J Neurosci Meth. 2013;220:46–54. https://doi.org/10.1016/j.jneumeth.2013.08.018.

    Article  Google Scholar 

  43. Pillarsetty N, Cai S, Ageyeva L, Finn RD, Blasberg RG. Synthesis and evaluation of [18F] labeled pyrimidine nucleosides for positron emission tomography imaging of herpes simplex virus 1 thymidine kinase gene expression. J Med Chem. 2006;49:5377–81. https://doi.org/10.1021/jm0512847.

    Article  CAS  PubMed  Google Scholar 

  44. Wen PY, Kesari S. Malignant gliomas in adults. New Engl J Med. 2008;359:492–507. https://doi.org/10.1056/NEJMra0708126.

    Article  CAS  PubMed  Google Scholar 

  45. Cao B, Su Y, Oskarsson M, Zhao P, Kort EJ, Fisher RJ, et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc National Acad Sci United States of America. 2001;98:7443–8. https://doi.org/10.1073/pnas.131200498.

    Article  CAS  Google Scholar 

  46. Becker AP, Sells BE, Haque SJ, Chakravarti A. Tumor heterogeneity in glioblastomas: from light microscopy to molecular pathology. Cancers (Basel). 2021:13. https://doi.org/10.3390/cancers13040761.

  47. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res. 1997;57:5391–8.

    CAS  PubMed  Google Scholar 

  48. Boccaccio C, Comoglio PM. The MET oncogene in glioblastoma stem cells: implications as a diagnostic marker and a therapeutic target. Cancer Res. 2013;73:3193–9. https://doi.org/10.1158/0008-5472.CAN-12-4039.

    Article  CAS  PubMed  Google Scholar 

  49. Nabeshima K, Shimao Y, Sato S, Kataoka H, Moriyama T, Kawano H, et al. Expression of c-Met correlates with grade of malignancy in human astrocytic tumours: an immunohistochemical study. Histopathol. 1997;31:436–43.

    Article  CAS  Google Scholar 

  50. Jagoda EM, Lang L, Bhadrasetty V, Histed S, Williams M, Kramer-Marek G, et al. Immuno-PET of the hepatocyte growth factor receptor Met using the 1-armed antibody onartuzumab. J Nucl Med. 2012;53:1592–600. https://doi.org/10.2967/jnumed.111.102293.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the International Collaboration Key Program of Chinese Academy of Sciences (GJHZ1622), the National Basic Research Program of China “973” program (2015CB91063), the Office of Science (BER), US Department of Energy (DE-SC0008397), NIH In vivo Cellular Molecular Imaging Center grant P50 CA114747, and the Chinese Academy of Sciences, projects from the National Science Foundation of China (U2267221, 81871419, 81430080, 81125021, 81871419, 81501501), Shanghai Municipal Science and Technology Major Project (TM202301H003).

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant No U2267221 to Dr Cheng, No 81871419 to Dr Bu, Shanghai Municipal Science and Technology Major Project (TM202301H003) to Dr Cheng, International Collaboration Key Program of Chinese Academy of Sciences (GJHZ1622) to Dr Zhang, the Office of Science (BER), US Department of Energy (DE-SC0008397) to Dr Cheng, and NIH In vivo Cellular Molecular Imaging Center grant P50 CA114747 to Dr Cheng.

Author information

Authors and Affiliations

Authors

Contributions

Lihong Bu: investigation, writing — original draft, writing — review and editing

Xiaowei Ma: investigation, writing — original draft, writing — review and editing

Aiyan Ji: methodology, writing — review and editing

Kaijun Geng: methodology, writing — review and editing

Hongyan Feng: methodology, writing — review and editing

Li Li: methodology, writing — review and editing

Ao Zhang: conceptualization, methodology, writing — original draft, writing — review and editing, project administration, funding acquisition

Zhen Cheng: conceptualization, methodology, writing — original draft, writing — review and editing, project administration, funding acquisition

Corresponding authors

Correspondence to Ao Zhang or Zhen Cheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4870 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, L., Ma, X., Ji, A. et al. Development of a novel 18F-labeled small molecule probe for PET imaging of mesenchymal epithelial transition receptor expression. Eur J Nucl Med Mol Imaging 51, 656–668 (2024). https://doi.org/10.1007/s00259-023-06495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06495-8

Keywords

Navigation