Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Met, metastasis, motility and more

Key Points

  • The Met receptor tyrosine kinase binds to, and is activated by, its specific ligand, the growth and motility factor HGF/SF (hepatocyte growth factor/scatter factor).

  • HGF/SF shares its overall domain structure with proteinases of the plasminogen family; the domain structure of Met is unique and its extracellular sequence is related to semaphorins and the semaphorin receptors (plexins).

  • Met activation results in tyrosine phosphorylation of the receptor at a unique bidentate docking site in the carboxy-terminal end of Met, which recruits signalling molecules such as the scaffolding adaptor Gab1 (growth-factor-receptor-bound protein 2 (Grb2)-associated binder 1). Gab1 mediates most of the complex cellular responses to Met activation.

  • The juxtamembrane domain of Met contains an additional docking site that, when phosphorylated, recruits Cbl, a ubiquitin ligase, which results in Met ubiquitylation, endocytosis and degradation.

  • Met activation can induce proliferation, dissociation of epithelial cells (scattering) and motility. Furthermore, signals from Met elicit a complex morphogenic response — the formation of branched tubules from epithelial cells grown in a collagen matrix.

  • During development, Met and HGF/SF are essential for the growth and survival of epithelial cell types and for migration of muscle progenitors. In adult physiology, Met activity prevents tissue damage and enhances liver regeneration.

  • Met is activated in human cancer by several molecular mechanisms, for example: mutations that alter the sequence and activity of the kinase domain; by overexpression; or by simultaneous expression of receptor and ligand, which results in the autocrine stimulation of cancer cells.

  • Met and HGF/SF are important targets for cancer therapy and many efforts are directed towards the identification of inhibitors that are active in vivo.

Abstract

Hepatocyte growth factor/scatter factor and its receptor, the tyrosine kinase Met, arose late in evolution and are unique to vertebrates. In spite of this, Met uses molecules such as Gab1 — homologues of which are present in Caenorhabditis elegans and Drosophila melanogaster — for downstream signalling. Pivotal roles for Met in development and cancer have been established: Met controls cell migration and growth in embryogenesis; it also controls growth, invasion and metastasis in cancer cells; and activating Met mutations predispose to human cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hepatocyte growth factor/scatter factor.
Figure 2: The Met receptor tyrosine kinase.
Figure 3: Substrate-binding sites of Met and the Tpr–Met oncoprotein.
Figure 4: Recruitment of Gab1 and Shp2 to Met and the plasma membrane.
Figure 5: Met-induced scattering and invasion.
Figure 6: Met signalling.
Figure 7: Met and cell migration in vivo.
Figure 8: MET mutations identified in human tumours.

References

  1. Cooper, C. S. et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311, 29–33 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Park, M. et al. Mechanism of met oncogene activation. Cell 45, 895–904 (1986). Early molecular characterization of the Tpr–Met oncogene and the Met proto-oncogene.

    Article  CAS  PubMed  Google Scholar 

  3. Stoker, M., Gherardi, E., Perryman, M. & Gray, J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327, 239–242 (1987). Reports the characterization of a fibroblast-derived protein which causes 'scattering' of epithelial cells (scatter factor). The report describes the isolation of the factor from fibroblasts and establishes its paracrine mechanism of action.

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura, T. et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440–443 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Miyazawa, K. et al. Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. Biochem. Biophys. Res. Commun. 163, 967–973 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Zarnegar, R. & Michalopoulos, G. Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes. Cancer Res. 49, 3314–3320 (1989). References 4–6 report the purification of hepatocyte growth factor (HGF) and the cloning and sequencing of HGF cDNA. These papers established that the two chains of HGF are encoded by a single transcript and that HGF contains kringle domains and an inactive serine proteinase domain.

    CAS  PubMed  Google Scholar 

  7. Weidner, K. M. et al. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc. Natl Acad. Sci. USA 88, 7001–7005 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gherardi, E. & Stoker, M. Hepatocytes and scatter factor. Nature 346, 228 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Bottaro, D. P. et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251, 802–804 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Donate, L. E. et al. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Protein Sci. 3, 2378–2394 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gherardi, E. et al. Functional map and domain structure of the MET (HGF/SF) receptor. Proc. Natl Acad. Sci. USA 100, 12039–12044 (2003). A mutagenesis study of the extracellular part of Met that maps HGF/SF binding to the sema domain. The study also provides three-dimensional models of the sema and Ig domains of Met.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ponzetto, C. et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 261–271 (1994). The bidentate docking site in the carboxy-terminal domain of Met is identified. Phosphorylation of this site allows interactions with multiple SH2-domain-containing signal transducers, and its mutation results in loss of signalling function of Met.

    Article  CAS  PubMed  Google Scholar 

  13. Weidner, K. M. et al. Interaction between gab1 and the c met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384, 173–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Sachs, M. et al. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J. Cell Biol. 150, 1375–1384 (2000). A study of the genetic analysis of Gab1 by targeted mutagenesis in mice. Remarkably similar phenotypes of the Gab1 and Met mutations are reported, which shows the essential role of Gab1 in Met signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Uehara, Y. et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702–705 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768–771 (1995). Limb muscles develop from cells that migrate from the somites. The authors report here that in Met-homozygous-mutant-mouse embryos, myogenic precursor cells do not invade the limb buds and, as a consequence, skeletal muscles of the limbs do not form. By contrast, development of the paraxial skeletal muscles proceeds in the absence of Met.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet. 16, 68–73 (1997). Hereditary papillary renal carcinoma is a form of kidney cancer that is characterized by a predisposition to develop multiple, renal tumours. Here, the first missense mutations in Met in hereditary tumours — papillary renal carcinomas — and in sporadic forms of renal cancer are identified.

    Article  CAS  PubMed  Google Scholar 

  20. Lokker, N. A. et al. Structure–function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO J. 11, 2503–2510 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwall, R. H. et al. Heparin induces dimerization and confers proliferative activity onto the hepatocyte growth factor antagonists NK1 and NK2. J. Cell Biol. 133, 709–718 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Hartmann, G. et al. Engineered mutants of HGF/SF with reduced binding to heparan sulphate proteoglycans, decreased clearance and enhanced activity in vivo. Curr. Biol. 8, 125–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. DiGabriele, A. D. et al. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature 393, 812–817 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Ultsch, M., Lokker, N. A., Godowski, P. J. & de Vos, A. M. Crystal structure of the NK1 fragment of human hepatocyte growth factor at 2.0 A resolution. Structure 6, 1383–1393 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Chirgadze, D. Y. et al. Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode for growth factor dimerization and receptor binding. Nature Struct. Biol. 6, 72–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Lietha, D., Chirgadze, D. Y., Mulloy, B., Blundell, T. L. & Gherardi, E. Crystal structures of NK1–heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. EMBO J. 20, 5543–5555 (2001). A crystallographic analysis of the NK1 fragment of HGF/SF in complex with heparin. The study defines the heparin-binding site in the amino-terminal domain and provides the basis for engineering NK1 variants with full agonistic activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lokker, N. A., Presta, L. G. & Godowski, P. J. Mutational analysis and molecular modeling of the N-terminal kringle-containing domain of hepatocyte growth factor identifies amino acid side chains important for interaction with the c-Met receptor. Protein Eng. 7, 895–903 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Xiong, J. P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Leonard, E. J. & Danilkovitch, A. Macrophage stimulating protein. Adv. Cancer. Res. 77, 139–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Raabe, T. et al. DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in Drosophila. Cell 85, 911–920 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Schutzman, J. L. et al. The Caenorhabditis elegans EGL-15 signaling pathway implicates a DOS-like multisubstrate adaptor protein in fibroblast growth factor signal transduction. Mol. Cell. Biol. 21, 8104–8116 (2001). References 30 and 31 report the identification of the Drosophila and C. elegans Gab homologues, Dos and Soc1, and show the requirement for these genes in the signalling of receptor tyrosine kinases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lock, L. S., Royal, I., Naujokas, M. A. & Park, M. Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and-independent recruitment of Gab1 to receptor tyrosine kinases. J. Biol. Chem. 275, 31536–31545 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Stefan, M. et al. Src homology 2-containing inositol 5-phosphatase 1 binds to the multifunctional docking site of c-Met and potentiates hepatocyte growth factor-induced branching tubulogenesis. J. Biol. Chem. 276, 3017–3023 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Sachs, M. et al. Motogenic and morphogenic activity of epithelial receptor tyrosine kinases. J. Cell Biol. 133, 1095–1107 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Maroun, C. R. et al. The Gab1 PH domain is required for localization of Gab1 at sites of cell–cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol. Cell. Biol. 19, 1784–1799 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schaeper, U. et al. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J. Cell Biol. 149, 1419–1432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gu, H. & Neel, B. G. The 'Gab' in signal transduction. Trends Cell Biol. 13, 122–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Rosario, M. & Birchmeier, W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol. 13, 328–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Cunnick, J. M. et al. Regulation of the mitogen-activated protein kinase signaling pathway by SHP2. J. Biol. Chem. 277, 9498–9504 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Jeffers, M., Taylor, G. A., Weidner, K. M., Omura, S. & Vande Woude, G. F. Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 17, 799–808 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peschard, P. et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol. Cell 8, 995–1004 (2001). The authors show that Cbl promotes ubiquitylation of Met. Cbl binds to the active Met receptor at a docking site in the juxtamembrane domain of Met. This docking site is absent in the Trp–Met oncogene.

    Article  CAS  PubMed  Google Scholar 

  42. Hammond, D. E., Urbe, S., Vande Woude, G. F. & Clague, M. J. Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene 20, 2761–2770 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  44. Weidner, K. M., Behrens, J., Vandekerckhove, J. & Birchmeier, W. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J. Cell Biol. 111, 2097–2108 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Potempa, S. & Ridley, A. J. Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol. Biol. Cell 9, 2185–2200 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hartmann, G., Weidner, K. M., Schwarz, H. & Birchmeier, W. The motility signal of scatter factor/hepatocyte growth factor mediated through the receptor tyrosine kinase met requires intracellular action of Ras. J. Biol. Chem. 269, 21936–21939 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Ridley, A. J., Comoglio, P. M. & Hall, A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol. Cell. Biol. 15, 1110–1122 (1995). An analysis of the roles of Ras, Rac and Rho in regulating responses to HGF/SF by microinjection of dominant inhibitory proteins. The authors report that inhibition of endogenous Ras proteins prevents HGF/SF-induced actin reorganization, spreading and scattering, and a dominant inhibitor of Rac prevents HGF/SF-induced spreading and actin reorganization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khwaja, A., Lehmann, K., Marte, B. M. & Downward, J. Phosphoinositide 3-kinase induces scattering and tubulogenesis in epithelial cells through a novel pathway. J. Biol. Chem. 273, 18793–18801 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Paumelle, R. et al. Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway. Oncogene 21, 2309–2319 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Royal, I., Lamarche-Vane, N., Lamorte, L., Kaibuchi, K. & Park, M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol. Biol. Cell 11, 1709–1725 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sakkab, D. et al. Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL. J. Biol. Chem. 275, 10772–10778 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Lamorte, L., Kamikura, D. M. & Park, M. A switch from p130Cas/Crk to Gab1/Crk signaling correlates with anchorage independent growth and JNK activation in cells transformed by the Met receptor oncoprotein. Oncogene 19, 5973–5981 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Fan, S. et al. The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. Mol. Cell Biol. 21, 4968–4984 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiao, G. H. et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc. Natl Acad. Sci. USA 98, 247–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Guzman, M., Dolfi, F., Zeh, K. & Vuori, K. Met-induced JNK activation is mediated by the adapter protein Crk and correlates with the Gab1–Crk signaling complex formation. Oncogene 18, 7775–7786 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Boccaccio, C. et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391, 285–288 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Y. W., Wang, L. M., Jove, R. & Vande Woude, G. F. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene 21, 217–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Schaper, F. et al. Hepatocyte growth factor/scatter factor (HGF/SF) signals via the STAT3/APRF transcription factor in human hepatoma cells and hepatocytes. FEBS Lett. 405, 99–103 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Müller, M., Morotti, A. & Ponzetto, C. Activation of NF-κB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol. Cell. Biol. 22, 1060–1072 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Monga, S. P. et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res. 62, 2064–2071 (2002).

    CAS  PubMed  Google Scholar 

  61. Muller, T., Bain, G., Wang, X. & Papkoff, J. Regulation of epithelial cell migration and tumor formation by β-catenin signaling. Exp. Cell Res. 280, 119–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Orian-Rousseau, V., Chen, L., Sleeman, J. P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 16, 3074–3086 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giordano, S. et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nature Cell Biol. 4, 720–724 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, X. et al. A mechanism of cell survival: sequestration of Fas by the HGF receptor Met. Mol. Cell 9, 411–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Trusolino, L., Bertotti, A. & Comoglio, P. M. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell 107, 643–654 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Crepaldi, T., Gautreau, A., Comoglio, P. M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol. 138, 423–434 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmits, R. et al. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 90, 2217–2233 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Dowling, J., Yu, Q. C. & Fuchs, E. β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J. Cell Biol. 134, 559–572 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Neyt, C. et al. Evolutionary origins of vertebrate appendicular muscle. Nature 408, 82–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Itoh, M. et al. Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol. Cell. Biol. 20, 3695–3704 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ieraci, A., Forni, P. E. & Ponzetto, C. Viable hypomorphic signaling mutant of the Met receptor reveals a role for hepatocyte growth factor in postnatal cerebellar development. Proc. Natl Acad. Sci. USA 99, 15200–15205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maina, F. & Klein, R. Hepatocyte growth factor, a versatile signal for developing neurons. Nature Neurosci. 2, 213–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Dietrich, S. et al. The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126, 1621–1629 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y. & Matsuda, H. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J. Clin. Invest. 106, 1511–1519 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Matsumoto, K. & Nakamura, T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int. 59, 2023–2038 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Rabkin, R. et al. Hepatocyte growth factor receptor in acute tubular necrosis. J. Am. Soc. Nephrol. 12, 531–540 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Jin, H. et al. Early treatment with hepatocyte growth factor improves cardiac function in experimental heart failure induced by myocardial infarction. J. Pharmacol. Exp. Ther. 304, 654–660 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Roos, F., Ryan, A. M., Chamow, S. M., Bennett, G. L. & Schwall, R. H. Induction of liver growth in normal mice by infusion of hepatocyte growth factor/scatter factor. Am. J. Physiol. 268, G380–G386 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Rosen, E. M. & Goldberg, I. D. Regulation of angiogenesis by scatter factor. EXS 79, 193–208 (1997).

    CAS  PubMed  Google Scholar 

  81. Rong, S., Segal, S., Anver, M., Resau, J. H. & Vande Woude, G. F. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl Acad. Sci. USA 91, 4731–4735 (1994). The authors show that NIH-3T3 cells that co-express Met and HGF/SF metastasize in an animal model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abounader, R. et al. In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J. 16, 108–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Takayama, H. et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl Acad. Sci. USA 94, 701–706 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Danilkovitch-Miagkova, A. & Zbar, B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J. Clin. Invest. 109, 863–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, R., Ferrell, L. D., Faouzi, S., Maher, J. J. & Bishop, J. M. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J. Cell Biol. 153, 1023–1034 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Furge, K. A. et al. Suppression of Ras-mediated tumorigenicity and metastasis through inhibition of the Met receptor tyrosine kinase. Proc. Natl Acad. Sci. USA 98, 10722–10727 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ivan, M., Bond, J. A., Prat, M., Comoglio, P. M. & Wynford-Thomas, D. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 14, 2417–2423 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Kitamura, S. et al. Met/HGF receptor modulates bcl-w expression and inhibits apoptosis in human colorectal cancers. Br. J. Cancer 83, 668–673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Derksen, P. W. et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17, 764–774 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Xin, X. et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am. J. Pathol. 158, 1111–1120 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morotti, A., Mila, S., Accornero, P., Tagliabue, E. & Ponzetto, C. K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 21, 4885–4893 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Atabey, N. et al. Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions. J. Biol. Chem. 276, 14308–14314 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Webb, C. P. et al. The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res. 60, 342–349 (2000).

    CAS  PubMed  Google Scholar 

  94. Schwall, R. & Tabor, K. H. Hepatocyte growth factor receptor antagonists and uses thereof. US Patent 6,468,529 (2002).

  95. Cao, B. et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc. Natl Acad. Sci. USA 98, 7443–7448 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maehara, N. et al. NK4, a four-kringle antagonist of HGF, inhibits spreading and invasion of human pancreatic cancer cells. Br. J. Cancer 84, 864–873 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Longati, P., Comoglio, P. M. & Bardelli, A. Receptor tyrosine kinases as therapeutic targets: the model of the MET oncogene. Curr. Drug Targets 2, 41–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Shawver, L. K., Slamon, D. & Ullrich, A. Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 1, 117–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Laird, A. D. & Cherrington, J. M. Small molecule tyrosine kinase inhibitors: clinical development of anticancer agents. Expert Opin. Investig. Drugs 12, 51–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Druker, B. J. Perspectives on the development of a molecularly targeted agent. Cancer Cell 1, 31–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Pollack, A. L., Runyan, R. B. & Mostov, K. E. Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell-cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev. Biol. 204, 64–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Hay, R. et al. Radioimmunoscintigraphy of tumors autocrine for human Met and hepatocyte growth factor/scatter factor. Mol. Imaging 1, 56–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Shaharabany, M. et al. In vivo molecular imaging of met tyrosine kinase growth factor receptor activity in normal organs and breast tumors. Cancer Res. 61, 4873–4878 (2001).

    CAS  PubMed  Google Scholar 

  106. Jeffers, M. et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc. Natl Acad. Sci. USA 94, 11445–11450 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hubbard, S. R., Wei, L., Ellis, L. & Hendrickson, W. A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Miller, M. et al. Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: modeling studies. Proteins 44, 32–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Birchmeier, C. & Brohmann, H. Genes that control the development of migrating muscle precursor cells. Curr. Opin. Cell Biol. 12, 725–730 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Grossmann, H. Wende, H. Brohmann and G. Schütz for the preparation of figures and M. Rosario for helpful discussions. We also thank B. Knudsen, C. Gao, C. Graveel, M. Gustafson, N. Shinomiya, Q. Xie, and Y. Zhang for assistance with Table 1. Finally, we are grateful to M. Reed, R. Hahn, D. Nadziejka, V. Long and S. Olbrich for assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. Vande Woude.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41580_2003_BFnrm1261_MOESM1_ESM.pdf

Online table 1: A continuously updated version of this table is available at www.vai.org/HgfSf-METandcancer. (PDF 56 kb)

Related links

Related links

DATABASES

Interpro

K1–K4

integrin α

LocusLink

ERK/MAPK

Swiss-Prot

C3G

coagulation factor X

coagulation factor XI

coagulation factor XII

Crk

EGF

Gab1

Grb2

HGF

MET

plasminogen

Rac1

Ras

Ron

Shp2

tPA

uPA

FURTHER INFORMATION

HGF/SF, Met and cancer today

Glossary

IMMUNOGLOBULIN DOMAIN

A protein domain of 90 amino acids consisting of two β-sheets. There are at least 5 distinct structural sets of the domain (V, C1, C2, I and E) that differ in the number, length and position of the strands that compose the two β-sheets.

KRINGLE DOMAIN

A protein domain of 80 amino acids characterized by limited secondary-structure elements and defined by three conserved disulphide bonds.

SERINE PROTEINASES

Endopeptidases that contain serine, histidine and aspartate in the catalytic site and include the complex, multidomain enzymes of the complement, blood-clotting and fibrinolytic systems. They are synthesized as inactive, single-chain zymogens and converted into active enzymes by site-specific proteolysis.

HEPARAN-SULPHATE PROTEOGLYCAN

A protein that is bound to a complex polysaccharide (heparan-sulphate glycosaminoglycan) that is present at the cell surface or in the extracellular matrix. When bound to ligand, it can have a key signalling role.

TYROSINE KINASE DOMAIN

A protein domain with the ability to catalyse the transfer of the γ-phosphate group of ATP to tyrosine residues on protein substrates. Several growth-factor receptors have tyrosine-kinase activity, which triggers a cascade of protein–protein interactions as a result of ligand-induced kinase activation.

SEMA DOMAIN

A protein domain of 450 amino acids identified in the semaphorin axon guidance proteins. Plexins (cell adhesion and semaphorin receptors) and the Met and Ron receptors also contain the sema domain or a variant of it. The sema domain of the Met receptor and of semaphorins adopts a β-propeller fold.

SH3 DOMAIN

(Src-homology-domain 3). A protein sequence of about 50 amino acids that recognizes and binds sequences rich in proline.

SH2 DOMAIN

(Src-homology-2 domain). A protein motif that recognizes and binds tyrosine-phosphorylated sequences, and thereby has a key role in relaying cascades of signal transduction.

PLECKSTRIN-HOMOLOGY (PH) DOMAIN

A sequence of 100 amino acids that is present in many signalling molecules and binds to lipid products of phosphatidylinositol 3-kinase. Pleckstrin is a protein of unknown function that was originally identified in platelets and is a principal substrate of protein kinase C.

E3 UBIQUITIN PROTEIN LIGASE

The third enzyme in a series — the first two are designated E1 and E2 — that is responsible for ubiquitylation of target proteins. E3 enzymes provide platforms for binding E2 enzymes and specific substrates, thereby coordinating ubiquitylation of the selected substrates.

EPITHELIAL–MESENCHYMAL TRANSITION

The transformation of an epithelial cell into a mesenchymal cell with migratory and invasive properties.

ETS/AP1 TRANSCRIPTION FACTOR

A bipartite transcription-regulatory element.

PLACENTAL TROPHOBLAST

The inner trophoblastic layer of cells that gives rise to the syncytiotrophoblast, which faces the maternal circulation and constitutes a layer through which all substances must pass from the mother to the fetus.

DERMOMYOTOME

Epithelial-cell layer in the dorsolateral region of the somite that faces the ectoderm and further differentiates into the most dorsal dermatome, which later differentiates into dermis and myotome — future skeletal muscles.

SOMITE

A mesodermal ball of cells adjacent to the neural tube that will differentiate into the muscle, vertebrae and dermis.

NEURAL CREST CELLS

A group of embryonic cells that separate from the embryonic neural plate and migrate, giving rise to the spinal and autonomic ganglia, peripheral glia, chromaffin cells, melanocytes and some haematopoietic cells.

NUDE MICE

Mice that have a mutation causing both hairlessness and defective formation of the thymus, which results in a lack of mature T cells.

OSTEOSARCOMA

A malignant tumour of the bone. It usually develops during the period of rapid growth during adolescence.

CARCINOMA

A malignant tumour of epithelial origin.

GLIOBLASTOMA MULTIFORME

A poorly differentiated, rapidly growing brain tumour that occurs most often in adults.

GELDANAMYCIN

A low-molecular-weight compound that binds to heat-shock protein 90 (Hsp90), a highly conserved cytosolic protein in eukaryotic and prokaryotic cells that functions as a chaperone. Geldanamycin inhibits Hsp90 function, which causes the proteasomal degradation of proteins that require the chaperone for maturation or stability. Geldanamycin therefore destabilizes proteins, such as Met, ErbB2, Bcr–Abl, or Akt/PKB, and can suppress tumour formation in animal models.

NUCLEAR IMAGING

The generation and analysis of diagnostic images showing the interaction of a radioactive compound with particular organs or tissues.

RADIOIMMUNOSCINTIGRAPHY

The use of radiolabelled antibodies or antibody derivatives for nuclear imaging.

CRE/LOXP

A site-specific recombination system derived from the Escherichia coli bacteriophage P1. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Activation of the Cre recombinase enzyme catalyses recombination between the loxP sites, which leads to the excision of the intervening sequence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birchmeier, C., Birchmeier, W., Gherardi, E. et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4, 915–925 (2003). https://doi.org/10.1038/nrm1261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing