Skip to main content
Log in

Review on fast tool servo machining of optical freeform surfaces

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fast tool servo (FTS) in ultra-precision machining (UPM) is an enabling and efficient technology for fabricating optical freeform surfaces or microstructures with submicrometric form accuracy and nanometric surface finish. There are many kinds of FTS in the different driving principle to present their various performances currently. Their kernel technologies influence the machining ability and accuracy of freeform surfaces, consequently receiving much research attention and interest. These technologies are generally summarized as the development of FTS structure, the advanced control algorithms, tool path planning, machining condition monitoring, and surface measurement and error compensation. This paper aims to survey the current state of the art in machining freeform optics by FTS. An analysis of the principle, performance, and application of FTS machining with regard to freeform optics is presented. And the key machining technologies for optical freeform surfaces by FTS are then introduced in detail. The challenges and opportunities for further studies are concluded according to the FTS machining difficult of optical freeform surfaces finally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheung CF, Hu K, Jiang XQ, Kong LB (2010) Characterization of surface defects in fast tool servo machining of microlens array using a pattern recognition and analysis method. Measurement 43(9):1240–1249. https://doi.org/10.1016/j.measurement.2010.06.003

    Article  Google Scholar 

  2. Forbes GW (2012) Characterizing the shape of freeform optics. Opt Express 20(3):2483–2499. https://doi.org/10.1364/OE.20.002483

    Article  Google Scholar 

  3. Kong LB, Cheung CF, Jiang JB, To S, Lee WB (2011) Characterization of freeform optics in automotive lighting systems using an optical–geometrical feature based method. Optik 122(4):358–363. https://doi.org/10.1016/j.ijleo.2010.02.020

    Article  Google Scholar 

  4. Wang H, Gao X (2013) Auto body taillight assembly modeling and fitting variation induced by tighten-up sequence analyzing. Assembly Autom 33(2):149–156. https://doi.org/10.1108/01445151311306654

    Article  Google Scholar 

  5. Plummer WT (2005) Free-form optical components in some early commercial products. Proc.of. SPIE 5865:67–73. https://doi.org/10.1117/12.623875

    Google Scholar 

  6. Norwood J, Moses J, Fletcher LN, Orton G, Irwin PG, Atreya S, Chanover N (2016) Giant planet observations with the james webb space telescope. Publ Astron Soc Pac 128(959):018005. https://doi.org/10.1088/1538-3873/128/959/018005

    Article  Google Scholar 

  7. Ashcraft TW, Atac R (2012) Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD). Procof SPIE 8383:3. https://doi.org/10.1117/12.919696

    Google Scholar 

  8. Fang F, Zhang N, Zhang X (2016) Precision injection molding of freeform optics. ADV. Opt Technol 5(4):303–324. https://doi.org/10.1515/aot-2016-0033

    MathSciNet  Google Scholar 

  9. Wang GL, Zhu DC, Dai YF (2011) Machining characteristics and route planning of complex optical surface by using fast tool servo. Chin J Mech Eng-En 47(15):175–180. https://doi.org/10.3901/JME.2011.15.175

    Article  Google Scholar 

  10. Li S, Wu Y, Fujimoto M, Nomura M (2016) Improving the working surface condition of electroplated cubic boron nitride grinding quill in surface grinding of Inconel 718 by the assistance of ultrasonic vibration. J Manuf Sci E-T Asme 138(7):071008. https://doi.org/10.1115/1.4032080

    Article  Google Scholar 

  11. Mamedov A, Lazoglu I (2016) An evaluation of micro milling chip thickness models for the process mechanics. Int J Adv Manuf Tech 87(5–8):1843–1849. https://doi.org/10.1007/s00170-016-8584-6

    Article  Google Scholar 

  12. Kong LB, Cheung CF, Lee WB (2016) A theoretical and experimental investigation of orthogonal slow tool servo machining of wavy microstructured patterns on precision rollers. Precis Eng 43(2):315–327. https://doi.org/10.1016/j.precisioneng.2015.08.012

    Article  Google Scholar 

  13. Zhang SJ, To S, Zhu ZW, Zhang GQ (2016) A review of fly cutting applied to surface generation in ultra-precision machining. Int J Mach Tool Manu 103:13–27. https://doi.org/10.1016/j.ijmachtools.2016.01.001

    Article  Google Scholar 

  14. Liu Q, Zhou X, Liu Z, Lin C, Ma L (2014) Long-stroke fast tool servo and a tool setting method for freeform optics fabrication. Opt Eng 53(9):092005–092005. https://doi.org/10.1117/1.OE.53.9.092005

    Article  Google Scholar 

  15. Tian F, Yin Z, Li S (2016) A novel long range fast tool servo for diamond turning. Int J Adv Manuf Tech (1–8). https://doi.org/10.1007/s00170-015-8282-9

  16. Feng H, Xia R, Li Y, Chen J, Yuan Y, Zhu D, Chen S, Chen H (2017) Fabrication of freeform progressive addition lenses using a self-developed long stroke fast tool servo. Int J Adv Manuf Tech:1–8. https://doi.org/10.1007/s00170-017-0050-6

  17. Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013) Manufacturing and measurement of freeform optics. CIRP Ann-Manuf Techn 62(2):823–846. https://doi.org/10.1016/j.cirp.2013.05.003

    Article  Google Scholar 

  18. Trumper DL, Lu X (2007) Fast tool servos: advances in precision, acceleration, and bandwidth. Towards Synthesis of Micro−/Nano-systems Springer London:11–19. https://doi.org/10.1007/1-84628-559-3_2

  19. Wu D, Xie X, Wang X (2008) Research review of fast tool servo. Mech Eng. https://doi.org/10.3321/j.issn:1004-132X.2008.11.027

  20. Li KT, Chen X, Chen XD, Liu Q, Zhou HW (2014) Study on a fast tool servo (FTS) driven by piezoelectric ceramic. Appl Mech Mater 635-637:1335–1340. https://doi.org/10.4028/www.scientific.net/AMM.635-637.1335

    Article  Google Scholar 

  21. Sosnicki O, PAGES A, Pacheco C, Malillard T (2010) Servo piezoelectric tool SPT400MML for the fast and precise machining of free forms. Int J Adv Manuf Tech 47:903–910. https://doi.org/10.1007/s00170-009-2140-6

    Article  Google Scholar 

  22. Köhler J, Seibel A (2014) FTS-based face milling of micro structures. Procedia CIRP 28:58–63. https://doi.org/10.1016/j.procir.2015.04.011

    Article  Google Scholar 

  23. Yang ZJ, Bai YD, Wang SJ, Chen XD, Liu Q, Li KT, Wang H, Chen X (2014) The development of an displacement sensor embedded voice coil motor based fast-tool-servo for the machining of micro-structure. Key Eng Mater 625:258–261. https://doi.org/10.4028/www.scientific.net/KEM.625.258

    Article  Google Scholar 

  24. Liu H, Sun Y, Zhu B, Hu Y, Xie W (2014) Inertial force control and balance error analysis of fast tool servo based on the voice coil motor. International Conference on Automation and Computing. IEEE:243–247. https://doi.org/10.1109/IConAC.2014.6935494

  25. Tian F, Yin Z, Li S (2014) Fast axis servo for the fast and precise machining of non-rotational symmetric optics. Int Symp Adv Opt Manuf Test Technol 928103. doi: https://doi.org/10.1117/12.2067863

  26. Lei W, Tan JB, Shan Z (2010) A giant magnetostrictive actuator based on use of permanent magnet. Int J Adv Manuf Tech 46(9):893–897. https://doi.org/10.1007/s00170-009-2177-6

    Article  Google Scholar 

  27. Nie YH, Fang FZ, Zhang XD (2014) System design of Maxwell force driving fast tool servos based on model analysis. Int J Adv Manuf Tech 72(1):25–32. https://doi.org/10.1007/s00170-013-4968-z

    Article  Google Scholar 

  28. Nie YH, Fang FZ, Zhang XD (2013) Fast tool servo driven by electromagnetic force applied in freeform surfaces machining. Adv Mater Res 709:281–285. https://doi.org/10.4028/www.scientific.net/AMR.709.281

    Article  Google Scholar 

  29. Wu D, Zhou S, Xie X (2011) Design and control of an electromagnetic fast tool servo with high bandwidth. IET Electr Power App 5(2):217–223. https://doi.org/10.1049/iet-epa.2010.0116

    Article  Google Scholar 

  30. Park G, Bement MT, Hartman DA, Smith RE, Farrar CR (2007) The use of active materials for machining processes: a review. Int J Mach Tool Manu 2007 47(15):2189–2206. https://doi.org/10.1016/j.ijmachtools.2007.06.002

    Article  Google Scholar 

  31. Nie YH (2014) The study of fast tool servo driven by Maxwell normal stress motor and its techniques. University of Tianjin, China, Dissertation

    Google Scholar 

  32. Liu Q, Zhou X, Xu P, Zou Q, Lin C (2012) A flexure-based long-stroke fast tool servo for diamond turning. Int J Adv Manuf Tech 59(9):859–867. https://doi.org/10.1007/s00170-011-3556-3

    Article  Google Scholar 

  33. Liu Q, Zhou X, Xu P, Zhang X (2014) A two-DOF fast tool servo for optical freeform surfaces diamond turning. Adv Mech Eng:1–8. https://doi.org/10.1155/2014/527975

  34. Rakuff S, Cuttino JF (2009) Design and testing of a long-range, precision fast tool servo system for diamond turning. Precis Eng 33(1):18–25. https://doi.org/10.1016/j.precisioneng.2008.03.001

    Article  Google Scholar 

  35. Yu DP, Hong GS, San Wong Y (2012) Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int J Mach Tool Manu 52(1):13–23

    Article  Google Scholar 

  36. Brinksmeier E, Riemer O, Gläbe R, Lüneman B, Kopylow CV, Dankwart C, Meier A (2010) Submicron functional surfaces generated by diamond machining. CIRP Ann-Manuf Techn 59(1):535–538. https://doi.org/10.1016/j.cirp.2010.03.037

    Article  Google Scholar 

  37. Brinksmeier E, Gläbe R, Schönemann L (2012) Review on diamond-machining processes for the generation of functional surface structures. Cirp Ann-Manuf Techn 5(1):1–7. https://doi.org/10.1016/j.cirpj.2011.10.003

    Article  Google Scholar 

  38. Hong LU, Choi SC, Lee SM, Lee DW (2012) Microstructure of fast tool servo machining on copper alloy. T Nonferr Metal Soc 22(S3):820–824. https://doi.org/10.1016/S1003-6326(12)61810-X

    Google Scholar 

  39. Lu H, Lee D, Kim J, Kim S (2014) Modeling and machining evaluation of microstructure fabrication by fast tool servo-based diamond machining. Precis Eng 38(1):212–216. https://doi.org/10.1016/j.precisioneng.2013.06.004

    Article  Google Scholar 

  40. Zhou M, Zhang HJ, Huang SN, Chen SJ, Cheng K (2011) Experimental study on the effects of feed rate and tool geometries on tool wear in diamond cutting of sinusoidal microstructured surfaces. P I Mech Eng B-J Eng 225(B2):172–183. https://doi.org/10.1177/09544054jem1933

    Google Scholar 

  41. Bono MJ, Hibbard RL (2004) Fabrication and metrology of microscale sinusoidal surfaces in polymer workpiece materials. Proceedings of the Aspe

  42. Yu DP, Wong YS, Hong GS (2012) Ductile-regime machining for fast tool servo diamond turning of micro-structured surfaces on brittle materials. Adv Mater Res 500:333–338. https://doi.org/10.4028/www.scientific.net/AMR.500.333

    Article  Google Scholar 

  43. Yu DP, Wong YS, Hong GS (2011) Ultraprecision machining of micro-structured functional surfaces on brittle materials. J Micromech Microeng 21(9):095011. https://doi.org/10.1088/0960-1317/21/9/095011

    Article  Google Scholar 

  44. Yu DP, Wong YS, Hong GS (2011) A novel method for determination of the subsurface damage depth in diamond turning of brittle materials. Int J Mach Tool Manu 51(12):918–927. https://doi.org/10.1016/j.ijmachtools.2011.08.007

    Article  Google Scholar 

  45. Zhu Z, Zhou X, Liu Q, Lin J, Zhao S (2012) Fabrication of micro-structured surfaces on bulk metallic glasses based on fast tool servo assisted diamond turning. SCI. Adv Mater Res 4(9):906–911. https://doi.org/10.1166/sam.2012.1374

    Article  Google Scholar 

  46. Li ZX, Fang FZ, Chen JJ, Zhang X (2017) Machining approach of freeform optics on infrared materials via ultra-precision turning. Opt Express 25(3):2051–2062. https://doi.org/10.1364/oe.25.002051

    Article  Google Scholar 

  47. Miller MH, Garrard KP, Dow TA, Taylor LW (1994) A controller architecture for integrating a fast tool servo into a diamond turning machine. Precis Eng 16(1):42–48. https://doi.org/10.1016/0141-6359(94)90017-5

    Article  Google Scholar 

  48. Chen Q (2009) Design and control of a fast long range actuator for single point diamond turning. North Carolina State University, Dissertation

    Google Scholar 

  49. Zhang XD, Fang FZ, QQ W, Liu XL, Gao HM (2013) Coordinate transformation machining of off-axis aspheric mirrors. Int J Adv Manuf Tech 67(9):2217–2224. https://doi.org/10.1007/s00170-012-4642-x

    Article  Google Scholar 

  50. Wang YZ, Chen LJ (2005) A real-time NURBS surface interpolator for 5-axis surface machining. Chinese J Aeronaut 18(3):263–272. https://doi.org/10.1016/S1000-9361(11)60308-7

    Article  Google Scholar 

  51. Liu J, Long F, Zhang W, Wang Z (2005) Frequency domain analysis of surface figure fitting based on zernike polynomials. Optica 25(8):1062–1066. https://doi.org/10.3321/j.issn:0253-2239.2005.08.011

    Google Scholar 

  52. Kang M, Wang XS, Yang Y, Zheng X (2011) Study on the turing of toric spectacle lens by use of slow tool servo method. Appl Mech Mater 52-54:1526–1531. https://doi.org/10.4028/www.scientific.net/AMM.52-54.1526

    Article  Google Scholar 

  53. Kong LB, Cheung CF, Kwok TC (2014) Theoretical and experimental analysis of the effect of error motions on surface generation in fast tool servo machining. Precis Eng 38(2):428–438. https://doi.org/10.1016/j.precisioneng.2013.12.010

    Article  Google Scholar 

  54. Garrard K, Hoffman J (2005) Design tools for freeform optics. Proc SPIE 5874(5874):95–105. https://doi.org/10.1117/12.617680

    Google Scholar 

  55. Brinksmeier E, Riemer O, Gläbe R, Meier A (2011) Material aspects for the diamond machining of submicron optical structures for UV-application. Int J Nanomanuf 7(1):63–72. https://doi.org/10.1504/IJNM.2011.039963

    Article  Google Scholar 

  56. Zhang XD, Gao HM, Guo YW, Zhang GX (2012) Machining of optical freeform prisms by rotating tools turning. Cirp Ann-Manuf Techn 61(1):519–522. https://doi.org/10.1016/j.cirp.2012.03.009

    Article  Google Scholar 

  57. Brinksmeier E, Gläbe R, Schönemann L (2012) Diamond micro chiseling of large-scale retroreflective arrays. Precis Eng 36(4):650–657. https://doi.org/10.1016/j.precisioneng.2012.06.001

    Article  Google Scholar 

  58. Scheiding S, Yi AY, Gebhardt A, Li L, Risse S, Eberhardt R, Tünnermann A (2011) Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. Opt Express 19(24):23938. https://doi.org/10.1364/OE.19.023938

    Article  Google Scholar 

  59. Yang ZJ, Zhou WB, Chen X, Chen XD, Li KT (2013) Modeling and optimal design of membrane based fast-tool-servo for freeform manufacturing of micro optical lens array. Key Eng Mater 552:411–414. https://doi.org/10.4028/www.scientific.net/KEM.552.411

    Article  Google Scholar 

  60. Gao W, Araki T, Kiyono S, Okazaki Y, Yamanaka M (2003) Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder. Precis Eng 27(3):289–298. https://doi.org/10.1016/S0141-6359(03)00028-X

    Article  Google Scholar 

  61. Zhou J, Li L, Naples N, Sun T, Yi AY (2013) Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process. J Micromech Microeng 23(7):075010. https://doi.org/10.1088/0960-1317/23/7/075010

    Article  Google Scholar 

  62. Zhao Q, Wang Y, Yu G, Xie D, Yang Y, Lu M (2010) Fast tool servo-based ultra-precision diamond machining of Fresnel micro-structured surface and its control technology. Chin J Mech Eng-En 46(9):179–186

    Article  Google Scholar 

  63. Cheng Y, Zhang XD, Zhang GX (2013) Design and machining of Fresnel solar concentrator surfaces. Int J Precis Technol 3(4):354–369. https://doi.org/10.1504/IJPTECH.2013.058257

    Article  Google Scholar 

  64. Zhang X, Jiang L, Zeng Z, Fang F, Liu X (2015) High angular accuracy manufacture method of micro v-grooves based on tool alignment by on-machine measurement. Opt Express 23(21):27819. https://doi.org/10.1364/OE.23.027819

    Article  Google Scholar 

  65. Cheung CF, Lee WB (2000) Modelling and simulation of surface topography in ultra-precision diamond turning. Proceedings of the Institution of Mechanical Engineers, Part B: J ENG MECH 214(6):463–480. https://doi.org/10.1243/0954405001517775

    Article  Google Scholar 

  66. Lee WB, To S, Cheung CF, Gao D, Chiu WM (2003) Ultra-precision machining of optical microstructures. Nanotech Prec Eng doi: 10.13494/j.npe.2003.011

  67. Ludwick SJ (1999) A rotary fast tool servo for diamond turning of asymmetric optics. Dissertation, Massachusetts Institute of Technology

    Google Scholar 

  68. Lu H, Choi SC, Lee SM, Park CH, Lee DW (2012) Development of a magnified mechanism for fast tool servo system. Key Eng Mater 516(516):317–320. https://doi.org/10.4028/www.scientific.net/kem.516.317

    Article  Google Scholar 

  69. Yang ZG, Liu DY, Wu LP, Chen HT (2007) Micro-displacement magnifying mechanism used in piezo-stack pump. Opt Pre Eng 15(6):884–888. https://doi.org/10.3321/j.issn:1004-924X.2007.06.014

    Google Scholar 

  70. Chen CM, Fung RF (2010) Dynamic modeling of a scott-russell amplifying mechanism driven by a piezoelectric actuator. 8th IEEE International Conference (ICCA):1796–1801. https://doi.org/10.1109/icca.2010.5524401

  71. Zhou HW, Chen X, Chen XD, Li KT (2013) Design calculation of micro-displacement amplifier mechanism based on bridge flexure hinge. Key Eng Mater 552:554–559. https://doi.org/10.4028/www.scientific.net/kem.552.554

    Article  Google Scholar 

  72. Ouyang XB, Chen W, Li KT, Chen X, Chen XD, Liu Q (2013) Study on the fast tool servo (FTS) with the stiffness adjustable. Key Eng Mater 552:248–251. https://doi.org/10.4028/www.scientific.net/KEM.552.248

    Article  Google Scholar 

  73. Li KT, Chen X, Chen XD, Liu Q, Zhou HW (2014) Study on the fast tool servo (FTS) with the replaceable flexible hinge. Key Eng Mater 625:398–401. https://doi.org/10.4028/www.scientific.net/KEM.625.398

    Article  Google Scholar 

  74. Xu M, Zhuang C, Xiong Z (2014) Optimization design of compliant mechanism for fast tool servo based on the genetic algorithm. J Inform Comput Sci 11(18):6619–6626. 10.12733/jics20105072

    Article  Google Scholar 

  75. Zhou JB, Tao S, Hou GA (2013) Optimal design and test of double elastic plate based fast tool servo. Opt Precis Eng 21(2):349–355. https://doi.org/10.3788/ope.20132102.0349

    Article  Google Scholar 

  76. Wu JQ, Zou Q, Wang T, Zhang QC, Zhang YL, Yao JN (2013) Structures analysis and optimum design of the large stroke two-axis fast tool servo. Adv Mater 853:477–481. https://doi.org/10.4028/www.scientific.net/AMR.853.477

    Google Scholar 

  77. Zhu Z, Zhou X, Liu Z, Wang R, Zhu L (2014) Development of a piezoelectrically actuated two-degree-of-freedom fast tool servo with decoupled motions for micro-/nanomachining. Precis Eng 38(4):809–820. https://doi.org/10.1016/j.precisioneng.2014.04.009

    Article  Google Scholar 

  78. Zhu Z, Zhou X, Luo D, Liu Q (2013) Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization. Opt Express 21(23):28469–28482. https://doi.org/10.1364/OE.21.028469

    Article  Google Scholar 

  79. Wang YM, Wang YQ, Zhou XQ, Hao AY (2012) A new 2-DOF fast tool servo for diamond turning of freeform optical surface. Appl Mech Mater 101:1010–1013. https://doi.org/10.4028/www.scientific.net/AMM.101-102.1010

    Article  Google Scholar 

  80. Montesanti RC (2005) High bandwidth rotary fast tool servos and a hybrid rotary/linear electromagnetic actuator. Mass Inst Technol. https://doi.org/10.2172/891383

  81. Wada T, Takahashi M, Tashiro I, Moriwaki T, Nakamoto K (2008) Development of a three axis controlled fast tool servo for ultra precision machining (3rd report) : High-speed Machining of Dies for Micro-Optical Devises Using High-Speed Tool Motion Control. J Jpn Soc Precis Eng 74:971–975. https://doi.org/10.2493/jjspe.74.971

    Article  Google Scholar 

  82. Liu YT, Li BJ (2014) Numerical study of a 3-Axis stage for application of fast tool servo. Key Eng Mater 625(3):219–223. https://doi.org/10.4028/www.scientific.net/KEM.625.219

    Article  Google Scholar 

  83. Wang XH, Ding Z, Ma YZ (2014) Turning of micro-structured surfaces based on a fast tool servo system. Appl Mech Mater 684:308–312. https://doi.org/10.4028/www.scientific.net/AMM.684.308

    Article  Google Scholar 

  84. Wang H, Yang S (2013) Design and control of a fast tool servo used in noncircular piston turning process. Mech Syst Signal PR 36(1):87–94. https://doi.org/10.1016/j.ymssp.2011.07.013

    Article  Google Scholar 

  85. Zhou JB, Wang XH, Sun T (2009) Adaptive PID control of fast tool servo based on neural network. Avi Precis Manuf Tech 45(2):22–19. https://doi.org/10.3969/j.issn.1003-5451.2009.02.006

    Google Scholar 

  86. Lu XD, Trumper DL (2005) Ultrafast tool servos for diamond turning. Cirp Ann-Manuf Techn 54(1):383–388. https://doi.org/10.1016/S0007-8506(07)60128-0

    Article  Google Scholar 

  87. Hillerström G, Walgama K (1996) Repetitive control theory and applications : a survey. Eur Geriatr Med 1(2):69–71. https://doi.org/10.1109/IROS.2004.1389553

    Google Scholar 

  88. Zhou X, Zhu Z, Zhao S, Lin J, Dou J (2011) An improved adaptive feedforward cancellation for trajectory tracking of fast tool servo based on fractional calculus. Procedia Eng 15(1):315–320. https://doi.org/10.1016/j.proeng.2011.08.061

    Article  Google Scholar 

  89. Ma H, Tian J, Hu D (2013) Development of a fast tool servo in noncircular turning and its control. Mech Syst Signal Pr 41(1):705–713. https://doi.org/10.1016/j.ymssp.2013.08.011

    Article  Google Scholar 

  90. Lin FJ, Shieh HJ, Huang PK (2006) Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism. IEEE T Neur Net Lear 17(2):432–444. https://doi.org/10.1109/TNN.2005.863473

    Article  Google Scholar 

  91. Li J, Qi X, Xia Y, Pu F, Chang K (2015) Frequency domain stability analysis of nonlinear active disturbance rejection control system. ISA T 56:188–195. https://doi.org/10.1016/j.isatra.2014.11.009

    Article  Google Scholar 

  92. Wu D, Zhao T, CHEN K (2013) Research and industrial applications of active disturbance rejection control to fast tool servos. IET Control Theory A 30(12):1354–1362. https://doi.org/10.7641/CTA.2013.31060

    Google Scholar 

  93. Wu D, Chen K, Wang X (2007) Tracking control and active disturbance rejection with application to noncircular machining. Int J Mach Tool Manu 47(15):2207–2217. https://doi.org/10.1016/j.ijmachtools.2007.07.002

    Article  Google Scholar 

  94. Wu D, Chen K (2014) Limit cycle analysis of active disturbance rejection control system with two nonlinearities. ISA T 53(4):947–954. https://doi.org/10.1016/j.isatra.2014.03.001

    Article  MathSciNet  Google Scholar 

  95. Zhang H, Dong G, Zhou M, Song CW, Huang YH, Du K (2013) A new variable structure sliding mode control strategy for FTS in diamond-cutting microstructured surfaces. Int J Adv Manuf Tech 65(5):1177–1184. https://doi.org/10.1007/s00170-012-4249-2

    Article  Google Scholar 

  96. Lin CY, Chen PY (2011) Precision tracking control of a biaxial piezo stage using repetitive control and double-feedforward compensation. Mechatronics 21(1):239–249. https://doi.org/10.1016/j.mechatronics.2010.11.002

    Article  Google Scholar 

  97. Kai LI, Nie Y, Zhang X (2014) Researches on control techniques of fast tool servo system. World Sci-tech R & D. https://doi.org/10.3969/j.issn.1006-6055.2014.02.006

  98. Wu S (2016) Study on an improved algorithm for optimization of PID parameters. Int J Online Eng 12(2):58–60. https://doi.org/10.3991/ijoe.v12i02.5050

    Article  Google Scholar 

  99. Azzaro JE, Veiga RA (2015) Sliding mode controller with neural network identification. IEEE Lat Am T 13(12):3754–3757. https://doi.org/10.1109/TLA.2015.7404904

    Article  Google Scholar 

  100. Fang FZ, Zhang XD, XT H (2008) Cylindrical coordinate machining of optical freeform surfaces. Opt Express 16(10):7323. https://doi.org/10.1364/OE.16.007323

    Article  Google Scholar 

  101. Zhao M, Zhao X, Li Z, Sun T (2014) Nearly arc-length tool path generation and tool radius compensation algorithm research in FTS turning. Int Symp Adv Opt Manuf Test Technol 92812G. doi: https://doi.org/10.1117/12.2068114

  102. Yu DP, Gan SW, Wong YS, Hong GS, Rahman M, Yao J (2012) Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces. Int J Adv Manuf Tech 63(9):1137–1152. https://doi.org/10.1007/s00170-012-3964-z

    Article  Google Scholar 

  103. Zhang XD, Fang FZ, Wang HB, Wei GS, Hu XT (2009) Ultra-precision machining of sinusoidal surfaces using the cylindrical coordinate method. J Micromech Microeng 19(5):054004. https://doi.org/10.1088/0960-1317/19/5/054004

    Article  Google Scholar 

  104. Ding HQ, Luo SM, Chang XF, Xie D (2014) Optimization algorithm of tool radius compensation in fast tool servo machining of microlens arrays. Adv Mater Res 1039:383–389. https://doi.org/10.4028/www.scientific.net/AMR.1039.383

    Article  Google Scholar 

  105. Wu D, Sun J, Wang X (2006) Surface generation method for non-rotationally symmetric turning. J Tsinghua U 46(11):1832–1835. https://doi.org/10.3321/j.issn:1000-0054.2006.11.009

    Google Scholar 

  106. Zhou CJ, Chen HC (2010) Tool path generation method of equal approximation error for free-form surface in high speed machining. Adv Mater Res 102-104:544–549. https://doi.org/10.4028/www.scientific.net/AMR.102-104.544

    Article  Google Scholar 

  107. Liu Q, Zhou X, Xu P (2014) A new tool path for optical freeform surface fast tool servo diamond turning. P I Mech Eng B-J Engv 228(12):1721–1726. https://doi.org/10.1177/0954405414523595

    Google Scholar 

  108. Liow JL, Frye U (2010) Surfaces machined by micro end-Mills at constant chip load. Key Eng Mater 443:232–237. https://doi.org/10.4028/www.scientific.net/KEM.443.232

    Article  Google Scholar 

  109. Zhou J, Sun T, Hou G, Qi E(2012) Key technologies for diamond turning of non-rotational symmetrical micro-structured surfaces. Int Symp Adv Opt Manuf Testing Technol 841619. doi: https://doi.org/10.1117/12.974344

  110. Yang HS, Kim SW, Walker D (2003) Novel laser datum system for nanometric profilometry for large optical surfaces. Opt Express 11(6):624–631. https://doi.org/10.1364/OE.11.000624

    Article  Google Scholar 

  111. Tamkin JM, Johnston R (2013) Comparison of CGH testing to CMM point cloud measurements for freeform surfaces. Freeform Optics FW2B-7. doi: https://doi.org/10.1364/FREEFORM.2013.FW2B.7

  112. Medicus KM, Nelson DG, Mandina MP (2013) Highly accurate surface maps from profilometer measurements. Proc. of SPIE 87881A. doi: https://doi.org/10.1117/12.2020302

  113. Vorburger TV, Rhee HG, Renegar TB, Song JF, Zheng A (2007) Comparison of optical and stylus methods for measurement of surface texture. Int J Adv Manuf Tech 33(1–2):110–118. https://doi.org/10.1007/s00170-007-0953-8

    Article  Google Scholar 

  114. Zhang X, Fang F, LH Y, Liang J, Guo Y (2013) Slow slide servo turning of compound eye lens. Precis Eng 52(2):023401. https://doi.org/10.1117/1.OE.52.2.023401

    Google Scholar 

  115. Zhu WL, Yang S, Ju BF, Jiang J, Sun A (2015) Scanning tunneling microscopy-based on-machine measurement for diamond fly cutting of micro-structured surfaces. Precis Eng 43:308–314. https://doi.org/10.1016/j.precisioneng.2015.08.011

    Article  Google Scholar 

  116. Ju BF, Zhu WL, Yang S, Yang K (2014) Scanning tunneling microscopy-based in situ measurement of fast tool servo-assisted diamond turning micro-structures. Meas Sci Technol 25(5):055004. https://doi.org/10.1088/0957-0233/25/5/055004

    Article  Google Scholar 

  117. Manske E, Jager G, Hausotte T, Fusharpl R (2012) Recent developments and challenges of nanopositioning and nanomeasuring technology. Meas Sci Technol 23(7):074001. https://doi.org/10.1088/0957-0233/23/7/074001

    Article  Google Scholar 

  118. Mazzeo AD, Stein AJ, Trumper DL, Hocken RJ (2009) Atomic force microscope for accurate dimensional metrology. Precis Eng 33(2):135–149. https://doi.org/10.1016/j.precisioneng.2008.04.007

    Article  Google Scholar 

  119. Hansen HN, Kofod N, De Chiffre L, Wanheim T (2002) Calibration and industrial application of instrument for surface mapping based on AFM. CIRP Ann-Manuf Techn 51(1):471–474. https://doi.org/10.1016/S0007-8506(07)61563-7

    Article  Google Scholar 

  120. Su P, Ma J, Tan Q, Kang G, Liu Y, Jin G (2012) Computer generated hologram null test of a freeform optical surface with rectangular aperture. Opt Eng 51(2):025801–025801. https://doi.org/10.1117/1.OE.51.2.025801

    Article  Google Scholar 

  121. Peterhänsel S, Pruss C, Osten W (2013) Phase errors in high line density CGH used for aspheric testing: beyond scalar approximation. Opt Express 21(10):11638–11651. https://doi.org/10.1364/OE.21.011638

    Article  Google Scholar 

  122. Feng J, Deng C, Xing T (2013) Design and location deviation of the computer generated holograms used for aspheric surface testing. Proc of SPIE 8788. https://doi.org/10.1117/12.2019864

  123. Guo W, Zhao L, Tong CS, Ming CI, Joshi SC (2013) Adaptive centroid-finding algorithm for freeform surface measurements. Appl Opt 52(10):D75–D83. https://doi.org/10.1364/AO.52.000D75

    Article  Google Scholar 

  124. Yin X, Zhao L, Li X, Fang Z (2010) Automatic centroid detection and surface measurement with a digital Shack-Hartmann wavefront sensor. Meas Sci Technol, 2010 21(1):209–213. https://doi.org/10.1088/0957-0233/21/1/015304

    Google Scholar 

  125. Wu Y, Ding L, Hu X (2011) An improved phase retrieval algorithm for optical aspheric surface measurement. Opt Commun 284(6):1496–1503. https://doi.org/10.1016/j.optcom.2010.11.039

    Article  Google Scholar 

  126. Li SY, Hu XJ, Wu YL (2008) Resolution-enhanced subpixel phase retrieval method. Appl Opt 47(32):6079–6087. https://doi.org/10.1364/AO.47.006079

    Article  Google Scholar 

  127. Brady GR, Fienup JR (2005) Phase retrieval as an optical metrology tool. Proc Of SPIE TD 03:139–141. https://doi.org/10.1117/12.605914

    Google Scholar 

  128. Su P, Wang Y, Burge JH, Kaznatcheev K, Idir M (2012) Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach. Opt Express 20(11):12393–12406. https://doi.org/10.1364/OE.20.012393

    Article  Google Scholar 

  129. Petz M, Tutsch R (2005) Reflection grating photogrammetry: a technique for absolute shape measurement of specular free-form surfaces. Proc Of SPIE 5869:355–366. https://doi.org/10.1117/12.617325

    Google Scholar 

  130. Xiao J, Wei X, Lu Z, Yu W, Wu H (2012) A review of available methods for surface shape measurement of solar concentrator in solar thermal power applications. Renew Sust Energ Rev 16(5):2539–2544. https://doi.org/10.1016/j.rser.2012.01.063

    Article  Google Scholar 

  131. Dumas P (2014) Advancements in sub-aperture stitching and magnetorheological finishing for freeform surfaces. Optical Fabrication and Testing Optical Society of America OW3B-5. doi: https://doi.org/10.1364/oft.2014.ow3b.5

  132. Zhao ZX, Zhao H, Gu FF, Zhang L (2013) Lateral location error compensation algorithm for measuring aspheric surfaces by sub-aperture stitching interferometry. Proc Of SPIE 87881B. doi: https://doi.org/10.1117/12.2020427

  133. Zhao J (2011) Study on development of self-sensing AFM head and hybrid measurement system. University of Tianjin, China, Dissertation

    Google Scholar 

  134. Liu Q, Pan S, Yan H, Zhou X, Wang R (2016) In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo. Int J Adv Manuf Tech 86(1):793–798. https://doi.org/10.1007/s00170-015-8229-1

    Article  Google Scholar 

  135. Gao W, Aoki J, BF J, Kiyono S (2007) Surface profile measurement of a sinusoidal grid using an atomic force microscope on a diamond turning machine. Precis Eng 31(3):304–309. https://doi.org/10.1016/j.precisioneng.2007.01.003

    Article  Google Scholar 

  136. Zhang XD, Jiang LL, Zeng Z, Fang F, Liu X (2015) High angular accuracy manufacture method of micro v-grooves based on tool alignment by on-machine measurement. Opt Express 23(21):27819–27828. https://doi.org/10.1364/OE.23.027819

    Article  Google Scholar 

  137. Gao HM, Fang FZ, Zhang XD (2014) Reverse analysis on the geometric errors of ultra-precision machine. Int J Adv Manuf Tech 73(9–12):1615–1624. https://doi.org/10.1007/s00170-014-5931-3

    Article  Google Scholar 

  138. Zhang XD, Wang QC, Fang FZ, Liu XL (2013) Controllable fabrication of freeform optics. Int J Precis Technol 3(3):277–289. https://doi.org/10.1504/IJPTECH.2013.057054

    Article  Google Scholar 

  139. Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. Cirp Ann-Manuf Techn 59(2):717–739. https://doi.org/10.1016/j.cirp.2010.05.010

    Article  Google Scholar 

  140. Chen YL, Shimizu Y, Cai Y, Wang S, Ito S, BF J, Gao W (2015) Self-evaluation of the cutting edge contour of a microdiamond tool with a force sensor integrated fast tool servo on an ultra-precision lathe. Int J Adv Manuf Tech 77(9):2257–2267. https://doi.org/10.1007/s00170-014-6580-2

    Article  Google Scholar 

  141. Sun S, Brandt M, Dargusch MS (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49(7–8):561–568. https://doi.org/10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

  142. Bhattacharyya B, Malapati M, Munda J, Sarker A (2007) Influence of tool vibration on machining performance in electrochemical micro-machining of copper. Int J Mach Tool Manu 47(2):335–342. https://doi.org/10.1016/j.ijmachtools.2006.03.005

    Article  Google Scholar 

  143. Dimla DE, Lister PM (2000) On-line metal cutting tool condition monitoring. : I: force and vibration analyses. Int J Mach Tool Manu 40(5):739–768. https://doi.org/10.1016/S0890-6955(99)00084-X

    Article  Google Scholar 

  144. Sun J, Hong GS, Rahman M, Wong YS (2004) Identification of feature set for effective tool condition monitoring by acoustic emission sensing. Iint J Prod Res 42(5):901–918. https://doi.org/10.1080/00207540310001626652

    Article  Google Scholar 

  145. Pai PS, Rao PR (2002) Acoustic emission analysis for tool wear monitoring in face milling. Iint J Prod Res 40(5):1081–1093. https://doi.org/10.1080/00207540110107534

    Article  MATH  Google Scholar 

  146. Lee BY (1999) Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current. Int J Adv Manuf Tech 15(4):238–243. https://doi.org/10.1007/s001700050062

    Article  Google Scholar 

  147. Tanabi H, Babaei N, Babaei A (2011) Real-time tool wear monitoring based on feed motor current in Chuck-Center mounting condition. Adv Mater Res 341-342:307–312. https://doi.org/10.4028/www.scientific.net/AMR.341-342.307

    Article  Google Scholar 

  148. Raja J, Muralikrishnan B, Fu S (2011) Recent advances in separation of roughness, waviness and form. Precis Eng 26(2):222–235. https://doi.org/10.2478/v10178-010-0050-4

    Article  Google Scholar 

  149. Boryczko A (2010) Distribution of roughness and waviness components of turned surface profiles. Metrol Meas Syst 17(4):611–620. https://doi.org/10.2478/v10178-010-0050-4

    Article  Google Scholar 

  150. Wang Q, Zhang X, Peng Y, Fang F (2012) Data filtering of optical freeform measurement based on a modified 2D cascaded approximating spline filter. 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies. Int Soc Opt Photon 84160J–84160J-6. doi: https://doi.org/10.1117/12.978166

  151. Neo DWK, Kumar AS, Rahman M (2014) A novel surface analytical model for cutting linearization error in fast tool/slow slide servo diamond turning. Precis Eng 38(4):849–860. https://doi.org/10.1016/j.precisioneng.2014.05.002

    Article  Google Scholar 

  152. Liu X, Zhang X, Fang F, Liu S (2016) Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning. Int J Mach Tool Manu 105:45–57. https://doi.org/10.1016/j.ijmachtools.2016.03.001

    Article  Google Scholar 

  153. Liu X, Zhang X, Fang F, Zeng Z, Gao H, Hu X (2015) Influence of machining errors on form errors of microlens arrays in ultra-precision turning. Int J Mach Tool Manu 96:80–93. https://doi.org/10.1016/j.ijmachtools.2015.05.008

    Article  Google Scholar 

  154. Kim HS, Kim EJ (2003) Feed-forward control of fast tool servo for real-time correction of spindle error in diamond turning of flat surfaces. Int J Mach Tool Manu 43(12):1177–1183. https://doi.org/10.1016/S0890-6955(03)00156-1

    Article  Google Scholar 

  155. Kim HS, Kim EJ, Song BS (2004) Diamond turning of large off-axis aspheric mirrors using a fast tool servo with on-machine measurement. J Mater Process Tech 146(3):349–355. https://doi.org/10.1016/j.jmatprotec.2003.11.028

    Article  Google Scholar 

  156. Sze-Wei G, Han-Seok L, Rahman M, Watt F (2007) A fine tool servo system for global position error compensation for a miniature ultra-precision lathe. Int J Mach Tool Manu 47(7–8):1302–1310. https://doi.org/10.1016/j.ijmachtools.2006.08.023

    Article  Google Scholar 

  157. Zhang X, Zeng Z, Liu X, Fang F (2015) Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement. Opt Express 23(19):24800–24810. https://doi.org/10.1364/OE.23.024800

    Article  Google Scholar 

  158. Chen YL, Wang S, Shimizu Y, Ito S, Gao W, BF J (2015) An in-process measurement method for repair of defective microstructures by using a fast tool servo with a force sensor. Precis Eng 39:134–142. https://doi.org/10.1016/j.precisioneng.2014.08.001

    Article  Google Scholar 

  159. Chen YL, Gao W, BF J, Shimizu Y, Ito S (2014) A measurement method of cutting tool position for relay fabrication of microstructured surface. Meas Sci Technol 25(6):064018. https://doi.org/10.1088/0957-0233/25/6/064018

    Article  Google Scholar 

  160. Wu QL (2015) Error compensation of optical freeform surfaces in fast tool servo diamond turning. Opt Precis Eng 23(9):2620–2626. https://doi.org/10.3788/OPE.20152309.2620

    Article  Google Scholar 

Download references

Funding

The authors appreciate the supports of the National Natural Science Foundation (Grant Nos. 51375337, 61635008, and 51320105009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Li, Z., Fang, F. et al. Review on fast tool servo machining of optical freeform surfaces. Int J Adv Manuf Technol 95, 2071–2092 (2018). https://doi.org/10.1007/s00170-017-1271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1271-4

Keywords

Navigation