Skip to main content
Log in

Self-evaluation of the cutting edge contour of a microdiamond tool with a force sensor integrated fast tool servo on an ultra-precision lathe

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a self-evaluation method for sub-micrometer accuracy measurement of the cutting edge contour of a micro diamond tool with a force sensor-integrated fast tool servo (FS-FTS) on an ultra-precision lathe without using any accurate reference artifacts and additional surface form measuring instruments. At first, a series of grooves is cut side by side along the Z-direction over the outer surface of a cylindrical artifact mounted on the lathe spindle by the micro tool of the FS-FTS, which is mounted on the X-directional cross-slide (X-slide) of the lathe, to form a number of sharp line structures. The FS-FTS is then switched to a force feedback control mode for the cutting edge of the micro tool to scan across the line structures as a measuring stylus by moving the artifact with the Z-directional carriage slide (Z-slide) of the spindle. During the scanning, the contact force between the micro tool and the line structures is maintained constant by controlling the X-directional displacement of the cutting tool with the FS-FTS so that the tool cutting edge contour can be obtained from the tool scan trace profile provided by the linear encoder of the Z-slide and the displacement sensor of the FS-FTS. Measurement experiments of a micro tool with a nominal nose radius of 120 μm are carried out to demonstrate the feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Gao W, Araki T, Kiyono S, Okazaki Y, Yamanaka M (2003) Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder. Precis Eng 27:289–298

    Article  Google Scholar 

  2. Altintas Y, Woronko A (2002) A piezo tool actuator for precision turning of hardened shafts. CIRP Ann Manuf Technol 51:303–306

    Article  Google Scholar 

  3. Brinksmeier E, Riemer O, Gläbe R, Lünemann B, Kopylow CV, Dankwart C, Meier A (2010) Submicron functional surfaces generated by diamond machining. CIRP Ann Manuf Technol 59:535–538

    Article  Google Scholar 

  4. Lu XD, Trumper DL (2007) Spindle rotary position estimation for fast tool trajectory generation. Int J Mach Tools Manuf 47:1362–1367

    Article  Google Scholar 

  5. Lucca DA, Chou P, Hocken RJ (1998) Effect of tool edge geometry on the nanometric cutting of Ge. CIRP Ann Technol 47:475–478

    Article  Google Scholar 

  6. Klocke F, Kratz H (2005) Advanced tool edge geometry for high precision hard turning. CIRP Ann Manuf Technol 54:47–50

    Article  Google Scholar 

  7. Noh YJ, Arai Y, Tano M, Gao W (2008) Fabrication of large-area micro-lens arrays with fast tool control. Int J Precis Eng Manuf 9:32–38

    Google Scholar 

  8. Storch B, Tomkiewicz AZ (2012) Distribution of unit forces on the tool nose rounding in the case of constrained turning. Int J Mach Tools Manuf 57:1–9

    Article  Google Scholar 

  9. Denkena B, Köhler J, Ventura CEH (2013) Customized cutting edge preparation by means of grinding. Precis Eng 37:590–598

    Article  Google Scholar 

  10. Ohmori H, Katahira K, Naruse T, Uehara Y, Nakao A, Mizutani M (2007) Microscopic griding effects on fabrication of ultra-fine micro tools. CIRP Ann Manuf Technol 56:569–572

    Article  Google Scholar 

  11. Picard YN, Adams DP, Vasile MJ, Ritchey MB (2003) Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components. Precis Eng 27:59–69

    Article  Google Scholar 

  12. Teti R, Jemielniak K, Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59:717–739

    Article  Google Scholar 

  13. Noh YJ, Arai Y, Gao W (2009) Improvement of a fast tool control unit for cutting force measurement in diamond turning of micro-lens array. Int J Surf Sci 3:227–241

    Article  Google Scholar 

  14. Drescher J (1993) Scanning electron microscopic technique for imaging a diamond tool edge. Precis Eng 15:112–114

    Article  Google Scholar 

  15. Asai S, Taguchi Y, Horio K, Kasai T, Kobayashi A (1990) Measuring the very small cutting-edge radius for a diamond tool using a new kind of SEM having two detectors. CIRP Ann Manuf Technol 39:85–88

    Article  Google Scholar 

  16. Hansen HN, Carneiro K, Haitjema H, De Chiffre L (2006) Dimensional micro and nano metrology. CIRP Ann Manuf Technol 55:721–743

    Article  Google Scholar 

  17. Maeda Y, Uchida H, Yamamoto A (1989) Measurement of the geometric features of a cutting tool edge with the aid of a digital image processing technique. Precis Eng 11:165–171

    Article  Google Scholar 

  18. Doiron TD (1989) Computer vision based station for tool setting and tool form measurement. Precis Eng 11:231–238

    Article  Google Scholar 

  19. Shaw L, Ettl S, Mehari F, Weckenmann A, Häusler G (2013) Automatic registration method for multisensory datasets adopted for dimensional measurement on cutting tools. Meas Sci Technol 24:045002

    Article  Google Scholar 

  20. Byrne G, Dornfeld D, Denkena B (2009) Advancing cutting technology. CIRP Ann Manuf Technol 52:483–507

    Article  Google Scholar 

  21. Lucca DA, Seo YW (1993) Effect of tool edge geometry on energy dissipation in ultraprecision machining. CIRP Ann Manuf Technol 42:83–86

    Article  Google Scholar 

  22. Gao W, Motoki T, Kiyono S (2006) Nanometer edge profile measurement of diamond cutting tools by atomic force microscope with optical alignment sensor. Precis Eng 30:396–405

    Article  Google Scholar 

  23. Gao W, Asai T, Arai Y (2009) Precision and fast measurement of 3D cutting edge profiles of single point diamond micro-tools. CIRP Ann Manuf Technol 58:451–454

    Article  Google Scholar 

  24. Weckenmann A, Estler T, Peggs G, Mcmurtry D (2004) Probing systems in dimensional metrology. CIRP Ann Manuf Technol 53:657–684

    Article  Google Scholar 

  25. Sheiko SS, Möller M, Reuvekamp EMCM, Zandbergen HW (1994) Evaluation of the probing profile of scanning force microscopy tips. Ultramicroscopy 53:371–380

    Article  Google Scholar 

  26. Heike S, Wada Y (1999) Correlation between tip-apex shape and surface modification by scanning tunneling microscopy. J Appl Phys 86:4220–4224

    Article  Google Scholar 

  27. Colombi P, Alessandri I, Bergese P, Federici S, Depero LE (2009) Self-assembled polystyrene nanospheres for the evaluation of atomic force microscopy tip curvature radius. Meas Sci Technol 20:084015

    Article  Google Scholar 

  28. Harada Y, Sone H, Hosaka S (2008) Estimation of three-dimensional atomic force microscope tip shape from atomic force microscope image for accurate measurement. Jpn J Appl Phys 47:6186–6189

    Article  Google Scholar 

  29. Lee KW, Noh YJ, Arai Y, Shimizu Y, Gao W (2011) Precision measurement of micro-lens profile by using a force-controlled diamond cutting tool on an ultra-precision lathe. Int J Precis Technol 2:211–225

    Article  MATH  Google Scholar 

  30. Chen YL, Gao W, Ju BF, Shimizu Y, Ito S (2014) A measurement method of cutting tool position for replay fabrication of microstructured surface. Meas Sci Technol 25:064018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Shimizu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YL., Shimizu, Y., Cai, Y. et al. Self-evaluation of the cutting edge contour of a microdiamond tool with a force sensor integrated fast tool servo on an ultra-precision lathe. Int J Adv Manuf Technol 77, 2257–2267 (2015). https://doi.org/10.1007/s00170-014-6580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6580-2

Keywords

Navigation