Skip to main content
Log in

Hydrodynamic Chromatography: The Underutilized Size-Based Separation Technique

  • Perspective Article
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Hydrodynamic chromatography (HDC) is a size-based liquid chromatographic technique with similar applications as size exclusion chromatography (SEC) and flow field flow fractionation (flow FFF). Separation in HDC is induced within the parabolic flow velocity profile in an open tube or in the interstitial spaces of a packed column, whereby analytes preferentially sample the various streamlines of flow based on size and as a result the larger analytes elute prior to the smaller ones. HDC experimental set-ups can utilize a range of detection methods, e.g., refractive index (RI), UV, multi-angle static light scattering (MALS), quasi-elastic light scattering (QELS), differential viscometry and inductively coupled plasma mass spectrometry (ICP-MS), coupled in various combinations. Here, we discuss the historical use of single-detector HDC for the determination of polymer/particle size using calibration standards, followed by the more modern-day approach of multi-detector HDC, which can be used for the determination of polymer/particle molar mass, size, shape and compactness. Finally, we provide a perspective on the potential and limitations of HDC as a technique for the characterization of polymers and particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography, 2nd edn. Wiley, New York

    Book  Google Scholar 

  2. Striegel AM (2011) Hydrodynamic chromatography: packed columns, multiple detectors, and microcapillaries. Anal Bioanal Chem 402:77–81. https://doi.org/10.1007/s00216-011-5334-3

    Article  CAS  PubMed  Google Scholar 

  3. Small H (1974) Hydrodynamic chromatography. A technique for size analysis of colloidal particles. J Colloid Interface Sci 48:147–161. https://doi.org/10.1016/0021-9797(74)90337-3

    Article  CAS  Google Scholar 

  4. Striegel AM (2021) Multi-detector hydrodynamic chromatography of colloids: following in Hamish Small’s footsteps. Heliyon 7:e06691

    Article  Google Scholar 

  5. Small H, Langhort MA (1982) Hydrodynamic chromatography. Anal Chem 54:892A-898A. https://doi.org/10.1021/ac00245a001

    Article  CAS  Google Scholar 

  6. DiMarzio EA, Guttman CM (1969) Separation by flow. Polym Lett 7:267–272. https://doi.org/10.1002/pol.1969.110070405

    Article  CAS  Google Scholar 

  7. DiMarzio EA, Guttman CM (1970) Separation by flow. Macromolecules 3:131–146. https://doi.org/10.1021/ma60014a005

    Article  CAS  Google Scholar 

  8. DiMarzio EA, Guttman CM (1970) Separation by flow. II application to gel permeation chromatography. Macromolecules 3:681–691. https://doi.org/10.1021/ma60017a610

    Article  Google Scholar 

  9. Brewer AK, Striegel AM (2009) Particle size characterization by quadruple-detector hydrodynamic chromatography. Anal Bioanal Chem 393:295–302. https://doi.org/10.1007/s00216-008-2319-y

    Article  CAS  PubMed  Google Scholar 

  10. Brewer AK, Striegel AM (2010) Hydrodynamic chromatography of latex blends. J Sep Sci 33:3555–3563. https://doi.org/10.1002/jssc.201000565

    Article  CAS  PubMed  Google Scholar 

  11. Brewer AK, Striegel AM (2011) Characterizing a spheroidal nanocage drug delivery vesicle using multi-detector hydrodynamic chromatography. Anal Bioanl Chem 399:1507–1514. https://doi.org/10.1007/s00216-010-4073-1

    Article  CAS  Google Scholar 

  12. Brewer AK, Striegel AM (2011) Characterizing the size, shape, and compactness of a polydisperse prolate ellipsoidal particle via quadruple-detector hydrodynamic chromatography. Analyst 136:515–519. https://doi.org/10.1039/C0AN00738B

    Article  CAS  PubMed  Google Scholar 

  13. Striegel AM, Brewer AK (2012) Hydrodynamic chromatography. Annu Rev Anal Chem 5:15–34. https://doi.org/10.1146/annurev-anchem-062011-143107

    Article  CAS  Google Scholar 

  14. Brewer AK, Striegel AM (2011) Characterizing string-of-pearl colloidal silica by multi-detector hydrodynamic chromatography and comparison to multi-detector size-exclusion chromatography, off line multi-angle static light scattering, and transmission electron microscopy. Anal Chem 83:3068–3075. https://doi.org/10.1021/ac103314c

    Article  CAS  PubMed  Google Scholar 

  15. Isenberg SL, Brewer AK, Côté GL, Striegel AM (2010) Hydrodynamic versus size exclusion chromatography characterization of alternan and comparison to off-line MALS. Biomacromol 11:2505–2511. https://doi.org/10.1021/bm100687b

    Article  CAS  Google Scholar 

  16. Striegel AM, Isenberg SL, Côté GL (2009) An SEC/MALS study of alternan degradation during size-exclusion chromatographic analysis. Anal Bioanl Chem 394:1887–1893. https://doi.org/10.1007/s00216-009-2895-5

    Article  CAS  Google Scholar 

  17. Stegeman G, Oostervink R, Kraak JC, Poppe H (1990) Hydrodynamic chromatography of macromolecules on small spherical non-porous silica particles. J Chromatogr A 506:547–561. https://doi.org/10.1016/S0021-9673(01)91604-8

    Article  CAS  Google Scholar 

  18. Stegeman G, Kraak JC, Poppe H (1991) Hydrodynamic and size-exclusion chromatography of polymers on porous particles. J Chromatogr 550:721–739. https://doi.org/10.1016/S0021-9673(01)88577-0

    Article  CAS  Google Scholar 

  19. Stegeman G, Kraak JC, Poppe H (1993) Hydrodynamic chromatography of polymers in packed columns. J Chromatogr 550:721–739. https://doi.org/10.1016/S0301-4770(08)61283-X

    Article  Google Scholar 

  20. Pitkănen L, Montoro Bustos AR, Murphy KE, Whichester MR, Stiregel AM (2017) Quantitative characterization of gold nanoparticles by size-exclusion and hydrodynamic chromatography, coupled to inductively coupled plasma mass spectrometry (SEC/ICP-MS and HDC/ICP-MS) and quasi-elastic light scattering (HDC/QELS). J Chromatogr A 1511:59–67. https://doi.org/10.1016/j.chroma.2017.06.064

    Article  CAS  PubMed  Google Scholar 

  21. Gary EP, Bruton TA, Higgins CP, Halden RU, Westerhoff PR, JF, (2012) Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J Anal Atom Spec 9:1532–1539. https://doi.org/10.1039/c2ja30069a

    Article  CAS  Google Scholar 

Download references

Funding

These is no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandaa K. Brewer.

Ethics declarations

Conflict of Interest

There is no conflict of interest to report.

Ethical Approval

This article does not contain any studies with animals or human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brewer, A.K. Hydrodynamic Chromatography: The Underutilized Size-Based Separation Technique. Chromatographia 84, 807–811 (2021). https://doi.org/10.1007/s10337-021-04065-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04065-4

Keywords

Navigation