Skip to main content

Effect-Engineering by Additive Manufacturing

  • Conference paper
  • First Online:
Innovative Product Development by Additive Manufacturing 2021

Abstract

With the help of effect-engineering, highly efficient additively manufactured products with a high-power density can be designed. The potential of product development lies in the conceptualization design and embodiment design phases, which have, however, only been methodically analyzed to a limited extent. Effect-engineering offers the possibility to resolve constructive contradictions and to influence disturbance variables. The research question answered in this article describes how a methodical procedure for effect-engineering must look to design highly efficient products for additive manufacturing. Simulation and multi-criteria optimization are particularly challenging in this context. For this purpose, a framework of effect engineering will be developed and the effects that offer significant added value for additive manufacturing will be shown. Furthermore, new system technologies in additive manufacturing are presented, which serve as enablers of the various effects. As a result of the contribution, the method of effect-engineering is successfully applied to two application examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehlers, T., Wurst, J., & Lachmayer, R. (2020). Bewertung der ökologischen und ökonomischen Nachhaltigkeit in der Additiven Fertigung. In R. Lachmayer, K. Rettschlag, & S. Kaierle (Eds.), Konstruktion für die Additive Fertigung 2019 (pp. 177–199). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-61149-4_12

  2. Wurst, J., Schneider, J. A., Ehlers, T., Mozgova, I., & Lachmayer, R. (2022). Corporate strategy based quantitative assessment of sustainability indicators at the example of a laser powder bed fusion process. In S. G. Scholz, R. J. Howlett, & R. Setchi (Eds.), Sustainable design and manufacturing (pp. 34–44). Springer Singapore. https://doi.org/10.1007/978-981-16-6128-0_4

  3. Roth, K. (2000). Konstruieren mit Konstruktionskatalogen, 3. Aufl., erw. und neu gestaltet. Springer. ISBN 9783540671428.

    Google Scholar 

  4. Lachmayer, R., Bode, B., Grabe, T., & Rettschlag, K. (2020). Integration spezifischer Effekte in Strukturbauteilen mittels additiver Fertigungsverfahren. In R. Lachmayer, K. Rettschlag, & S. Kaierle (Eds.), Konstruktion für die Additive Fertigung 2019 (pp. 1–10). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-61149-4_1

  5. Ehlers, T., Lippert, R. B., & Lachmayer, R. (2020). Bewertung von Strukturbauteilen aus gradierten Materialien für Selektives Laserstrahlschmelzen. In R. Lachmayer, R. B. Lippert, & S. Kaierle (Eds.), Konstruktion für die Additive Fertigung 2018 (pp. 109–127). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-59058-4_7

  6. Urbanek, S., Keuter, R., Peter, E., & Ponick, B. (2020). Effects of continuous rotor skewing in additively manufactured permanent magnet rotors. In 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) (pp. 662–669). Sorrento, Italy, 24–26 June 2020. IEEE. https://doi.org/10.1109/SPEEDAM48782.2020.9161932

  7. Adam, G. A., & Zimmer, D. (2014). Design for additive manufacturing—Element transitions and aggregated structures. CIRP Journal of Manufacturing Science and Technology, 7, 20–28. https://doi.org/10.1016/j.cirpj.2013.10.001

    Article  Google Scholar 

  8. Hengsbach, F., Koppa, P., Holzweissig, M. J., Aydinöz, M. E., Taube, A., Hoyer, K.-P., Starykov, O., Tonn, B., Niendorf, T., Tröster, T., et al. (2018). Inline additively manufactured functionally graded multi-materials: Microstructural and mechanical characterization of 316L parts with H13 layers. Progress in Additive Manufacturing, 3, 221–231. https://doi.org/10.1007/s40964-018-0044-4

    Article  Google Scholar 

  9. Kumke, M. (2018). Methodisches Konstruieren von additiv gefertigten Bauteilen. Springer Fachmedien Wiesbaden.

    Google Scholar 

  10. Lachmayer, R., & Lippert, R. B. (2020). Entwicklungsmethodik für die Additive Fertigung. Springer Berlin Heidelberg. ISBN 978-3-662-59788-0.

    Google Scholar 

  11. Rosa, F., Manzoni, S., & Casati, R. (2018). Damping behavior of 316L lattice structures produced by selective laser melting. Materials & Design, 160, 1010–1018. https://doi.org/10.1016/j.matdes.2018.10.035

    Article  Google Scholar 

  12. Urbanek, S., & Ponick, B. (2018). Surface eddy current loss reduction in additively manufactured permanent magnet rotor active parts. In 2018 XIII International Conference on Electrical Machines (ICEM) (pp. 1317–1322). Alexandroupoli, 03–06 Sept 2018. IEEE. https://doi.org/10.1109/ICELMACH.2018.8507151

  13. Müller, P., Gembarski, P. C., & Lachmayer, R. (2021). Spezifikationen einer Entwicklungsumgebung zur Synthese einer patientenindividuellen Kurzschaftendoprothese der Hüfte. In H. Binz, B. Bertsche, D. Spath, & D. Roth (Eds.), Stuttgarter Symposium für Produktentwicklung SSP 2021: Stuttgart, 20 Mai 2021, Wissenschaftliche Konferenz. Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO. https://doi.org/10.18419/opus-11478

  14. Yang, S., Tang, Y., & Zhao, Y. F. (2016). Assembly-level design for additive manufacturing: Issues and benchmark. In Volume 2A: 42nd Design Automation Conference. ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, North Carolina, USA, 21–24 Aug. 2016. American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2016-59565

  15. Tang, Y., Yang, S., & Zhao, Y. F. (2016). Sustainable design for additive manufacturing through functionality integration and part consolidation. In S. S. Muthu & M. M. Savalani (Eds.), Handbook of sustainability in additive manufacturing (pp. 101–144). Springer Singapore. https://doi.org/10.1007/978-981-10-0549-7_6

  16. Künneke, T., & Zimmer, D. (2017). Funktionsintegration additiv gefertigter Dämpfungsstrukturen bei Biegeschwingungen. In H. A. Richard, B. Schramm, & T. Zipsner (Eds.), Additive Fertigung von Bauteilen und Strukturen (pp. 61–74). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-17780-5_4

  17. Zhang, C., Wang, S., Li, J., Zhu, Y., Peng, T., & Yang, H. (2020). Additive manufacturing of products with functional fluid channels: A review. Additive Manufacturing, 36, 101490. https://doi.org/10.1016/j.addma.2020.101490

    Article  Google Scholar 

  18. Biermann, T., Ziebehl, A., Grabe, T., Röttger, J., Ley, P.-P., Wolf, A., & Lachmayer, R. (2021). Magnetically actuated solid body PDMS lens. In M. J. Digonnet & S. Jiang (Eds.), Optical components and materials XVIII (p. 30). Online Only, United States, 06–12 March 2021. SPIE. https://doi.org/10.1117/12.2578551

  19. Lachmayer, R., Gembarski, P. C., Gottwald, P., & Lippert, R. B. (2017). The potential of product customization using technologies of additive manufacturing. In J. Bellemare, S. Carrier, K. Nielsen, & F. T. Piller (Eds.), Managing complexity (pp. 71–81). Springer International Publishing. https://doi.org/10.1007/978-3-319-29058-4_6

  20. Ehlers, T., Lachmayer, R., Vajna, S., & Halle, T. (2020). Producibility. In S. Vajna (Ed.), Integrated design engineering (pp. 287–323). Springer International Publishing. https://doi.org/10.1007/978-3-030-19357-7_9

  21. Harun, W., Kamariah, M., Muhamad, N., Ghani, S., Ahmad, F., & Mohamed, Z. (2018). A review of powder additive manufacturing processes for metallic biomaterials. Powder Technology, 327, 128–151. https://doi.org/10.1016/j.powtec.2017.12.058

    Article  Google Scholar 

  22. Grabe, T., Lammers, M., Wang, S., Wang, X., Rettschlag, K., Sleiman, K., Barroi, A., Biermann, T., Ziebehl, A., Röttger, J., et al. (2021). Additive anufacturing of fused silica using coaxial laser glass deposition: Experiment, simulation and discussion. In H. Helvajian, B. Gu, & H. Chen (Eds.), Laser 3D manufacturing VIII (p. 32). Online Only, United States, 06–12 March 2021. SPIE. https://doi.org/10.1117/12.2577205

  23. Reiher, T. (2018). Intelligente Optimierung von Produktgeometrien für die additive Fertigung. Dissertation, Shaker Verlag.

    Google Scholar 

  24. Wiberg, A., Persson, J., & Ölvander, J. (2019). Design for additive manufacturing – A review of available design methods and software. RPJ, 25, 1080–1094. https://doi.org/10.1108/RPJ-10-2018-0262

    Article  Google Scholar 

  25. Emmelmann, C., Sander, P., Kranz, J., & Wycisk, E. (2011). Laser additive manufacturing and bionics: Redefining lightweight design. Physics Procedia, 12, 364–368. https://doi.org/10.1016/j.phpro.2011.03.046

    Article  Google Scholar 

  26. Koltze, K., & Souchkov, V. (2010). Systematische Innovation: TRIZ-Anwendung in der Produkt- und Prozessentwicklung (1st ed.). Carl Hanser Fachbuchverlag.

    Google Scholar 

  27. Brockmöller, T., Mozgova, I., & Lachmayer, R. (2017). An approach to analyse the potential of tailored forming by TRIZ reverse. In Proceedings of the 21st International Conference on Engineering Design (ICED 17) (Vol. 4, pp. 445–452). Design Methods and Tools.

    Google Scholar 

  28. Kloock-Schreiber, D., Brockmöller, T., Schneider, J., Gembarski, P., Mozgova, I., & Lachmayer, R. (2020). TRIZ-reverse for PSS potential determination. Novi Sad, Serbia, sn

    Google Scholar 

  29. Künneke, T., & Zimmer, D. (2021). Konstruktionsregeln für additiv gefertigte Partikeldämpfer/design rules for additive manufactured particle dampers. Konstruktion, 73, 72–78. https://doi.org/10.37544/0720-5953-2021-11-12-72

    Article  Google Scholar 

  30. Vogel, F. A., Berger, S., Özkaya, E., & Biermann, D. (2019). Vibration suppression in turning TiAl6V4 using additively manufactured tool holders with specially structured, particle filled hollow elements. Procedia Manufacturing, 40, 32–37. https://doi.org/10.1016/j.promfg.2020.02.007

    Article  Google Scholar 

  31. Ehlers, T., & Lachmayer, R. (2021). Design of a motorcycle triple clamp optimised for stiffness and damping. In S. Pfingstl, A. Horoschenkoff, P. Höfer, & M. Zimmermann (Eds.), Proceedings of the Munich Symposium on Lightweight Design 2020 (pp. 1–17). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-63143-0_1

  32. Richard, H. A., Schramm, B., & Zipsner, T. (Eds.), Additive Fertigung von Bauteilen und Strukturen. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-17780-5

  33. Singh, S., & Ramakrishna, S. (2017). Biomedical applications of additive manufacturing: Present and future. Current Opinion in Biomedical Engineering, 2, 105–115. https://doi.org/10.1016/j.cobme.2017.05.006

    Article  Google Scholar 

  34. Sabahi, N., Chen, W., Wang, C.-H., Kruzic, J. J., & Li, X. (2020). A review on additive manufacturing of shape-memory materials for biomedical applications. JOM Journal of the Minerals Metals and Materials Society, 72, 1229–1253. https://doi.org/10.1007/s11837-020-04013-x

    Article  Google Scholar 

  35. Ahangar, P., Cooke, M. E., Weber, M. H., & Rosenzweig, D. H. (2019). Current biomedical applications of 3D printing and additive manufacturing. Applied Sciences, 9, 1713. https://doi.org/10.3390/app9081713

    Article  Google Scholar 

  36. Scott-Emuakpor, O., George, T., Runyon, B., Holycross, C., Langley, B., Sheridan, L., O’Hara, R., Johnson, P., & Beck, J. (2018). Investigating damping performance of laser powder bed fused components with unique internal structures. In Volume 7C: Structures and Dynamics. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. American Society of Mechanical Engineers. https://doi.org/10.1115/GT2018-75977

  37. Scott-Emuakpor, O., George, T., Runyon, B., Langley, B., Sheridan, L., Holycross, C., O’Hara, R., & Johnson, P. (2019). Forced-response verification of the inherent damping in additive manufactured specimens. In S. Kramer, J. L. Jordan, H. Jin, J. Carroll, & A. M. Beese (Eds.), Mechanics of additive and advanced manufacturing (Vol. 8, pp 81–86). Springer International Publishing. https://doi.org/10.1007/978-3-319-95083-9_15

  38. Scott-Emuakpor, O., Beck, J., Runyon, B., & George, T. (2021). Determining unfused powder threshold for optimal inherent damping with additive manufacturing. Additive Manufacturing, 38, 101739. https://doi.org/10.1016/j.addma.2020.101739

    Article  Google Scholar 

  39. Ganter, N. V., Ehlers, T., Gembarski, P. C., & Lachmayer, R. (2021). Additive refurbishment of a vibration-loaded structural component. Proceedings of the Design Society, 1, 345–354. https://doi.org/10.1017/pds.2021.35

    Article  Google Scholar 

  40. Andresen, S. (2018). Untersuchung von Eigenschwingung und Leichtbaupotenzial unterschiedlicher Gitterstrukturen am Beispiel von Magnetuntergestellen von Teilchenbeschleunigern. In NAFEMS DACH Regional Conference.

    Google Scholar 

  41. Andresen, S., Bäger, A., & Hamm, C. (2020). Eigenfrequency maximisation by using irregular lattice structures. Journal of Sound and Vibration, 465, 115027. https://doi.org/10.1016/j.jsv.2019.115027

    Article  Google Scholar 

  42. Cheng, L., Liang, X., Belski, E., Wang, X., Sietins, J. M., Ludwick, S., & To, A. (2018). Natural frequency optimization of variable-density additive manufactured lattice structure: Theory and experimental validation. Journal of Manufacturing Science and Engineering, 140. https://doi.org/10.1115/1.4040622

  43. Koopmann, J. (2019). Multimaterialdruck von integrierten elektrischen Strukturen mittels selektivem Laserschmelzen. Dissertation, Kassel University Press GmbH.

    Google Scholar 

  44. Rudolph, J., Lorenz, F., & Werner, R. (2018). Herstellung elektrischer Motoren mittels 3D-Multimaterialdruck. awIC, 3. https://doi.org/10.14464/awic.v3i0.275

  45. Binder, M., Anstaett, C., Reisch, R., Schlick, G., Seidel, C., & Reinhart, G. (2018). Automated manufacturing of mechatronic parts by laser-based powder bed fusion. Procedia Manufacturing, 18, 12–19. https://doi.org/10.1016/j.promfg.2018.11.002

    Article  Google Scholar 

  46. Abt, M., Roch, A., Qayyum, J. A., Pestotnik, S., Stepien, L., Abu-Ageel, A., Wright, B., Ulusoy, A. C., Albrecht, J., Harle, L., et al. (2018). Aerosol-printed highly conductive Ag transmission lines for flexible electronic devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8, 1838–1844. https://doi.org/10.1109/TCPMT.2018.2869977

  47. Wang, G., Cheng, T., Do, Y., Yang, H., Tao, Y., Gu, J., An, B., & Yao, L. (2018). Printed paper actuator. In R. Mandryk, M. Hancock, M. Perry, & A. Cox (Eds.) Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI’18 (pp 1–12). Montreal QC Canada, 21–26 April 2018. ACM. https://doi.org/10.1145/3173574.3174143

  48. Urbanek, S., Ponick, B., Taube, A., Hoyer, K.-P., Schaper, M., Lammers, S., Lieneke, T., & Zimmer, D. (2018). Additive manufacturing of a soft magnetic rotor active part and shaft for a permanent magnet synchronous machine. In 2018 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 668–674). Long Beach, CA, USA, 13–15 June 2018. IEEE. https://doi.org/10.1109/ITEC.2018.8450250

  49. Ziebehl, A., Biermann, T., Grabe, T., Röttger, J., Ley, P.-P., Wolf, A., & Lachmayer, R. (2021). Potentials and challenges in additive manufacturing of nanoparticle-infused silicone optics.

    Google Scholar 

  50. Wu, S.-Y., Yang, C., Hsu, W., & Lin, L. (2015). RF wireless lc tank sensors fabricated by 3D additive manufacturing. In 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (pp. 2208–2211).

    Google Scholar 

  51. Momeni, F., Mehdi Hassani, N. S. M., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials & Design, 122, 42–79. https://doi.org/10.1016/j.matdes.2017.02.068

  52. Tibbits, S. (2014). 4D printing: Multi-material shape change. Archit Design, 84, 116–121. https://doi.org/10.1002/ad.1710

    Article  Google Scholar 

  53. Khademhosseini, A., & Langer, R. (2016). A decade of progress in tissue engineering. Nature Protocols, 11, 1775–1781. https://doi.org/10.1038/nprot.2016.123

    Article  Google Scholar 

  54. Zarek, M., Mansour, N., Shapira, S., & Cohn, D. (2017). 4D printing of shape memory-based personalized endoluminal medical devices. Macromolecular Rapid Communications, 38. https://doi.org/10.1002/marc.201600628

  55. Taylor, D. L., & Het Panhuis, M. (2016). Self-healing hydrogels. Advanced Materials, 28, 9060–9093. https://doi.org/10.1002/adma.201601613

  56. Zolfagharian, A., Kaynak, A., & Kouzani, A. (2020). Closed-loop 4D-printed soft robots. Materials & Design, 188, 108411. https://doi.org/10.1016/j.matdes.2019.108411

    Article  Google Scholar 

  57. Dolce, M., & Cardone, D. (2006). Theoretical and experimental studies for the application of shape memory alloys in civil engineering. Journal of Engineering Materials and Technology, 128, 302–311. https://doi.org/10.1115/1.2203106

    Article  Google Scholar 

  58. Gustmann, T., Schwab, H., Kühn, U., & Pauly, S. (2018). Selective laser remelting of an additively manufactured Cu-Al-Ni-Mn shape-memory alloy. Materials & Design, 153, 129–138. https://doi.org/10.1016/j.matdes.2018.05.010

    Article  Google Scholar 

  59. Kim, J., & Yoo, D.-J. (2020). 3D printed compact heat exchangers with mathematically defined core structures. Journal of Computational Design and Engineering, 7, 527–550. https://doi.org/10.1093/jcde/qwaa032

    Article  Google Scholar 

  60. Niknam, S. A., Mortazavi, M., & Li, D. (2021). Additively manufactured heat exchangers: A review on opportunities and challenges. International Journal of Advanced Manufacturing Technology, 112, 601–618. https://doi.org/10.1007/s00170-020-06372-w

    Article  Google Scholar 

  61. Scheithauer, U., Kordaß, R., Noack, K., Eichenauer, M. F., Hartmann, M., Abel, J., Ganzer, G., & Lordick, D. (2019). Potentials and challenges of additive manufacturing technologies for heat exchanger. In L. Castro Gómez & V. Manuel Velázquez Flores (Eds.), Advances in heat exchangers. IntechOpen. https://doi.org/10.5772/intechopen.80010

  62. Wang, G., Gu, Y., Zhao, L., Xuan, J., Zeng, G., Tang, Z., & Sun, Y. (2019). Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing. Chemical Engineering Science, 195, 250–261. https://doi.org/10.1016/j.ces.2018.07.021

    Article  Google Scholar 

  63. Schneck, M., Horn, M., Schindler, M., & Seidel, C. (2022). Capability of multi-material laser-based powder bed fusion—Development and analysis of a prototype large bore engine component. Metals, 12, 44. https://doi.org/10.3390/met12010044

    Article  Google Scholar 

  64. Shinde, M. S., & Ashtankar, K. M. (2017). Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes. Advances in Mechanical Engineering, 9. https://doi.org/10.1177/1687814017699764

  65. Armillotta, A., Baraggi, R., & Fasoli, S. (2014). SLM tooling for die casting with conformal cooling channels. International Journal of Advanced Manufacturing Technology, 71, 573–583. https://doi.org/10.1007/s00170-013-5523-7

    Article  Google Scholar 

  66. Belgiorno, G., Boscolo, A., Dileo, G., Numidi, F., Pesce, F. C., Vassallo, A., Ianniello, R., Beatrice, C., & Di Blasio, G. (2021). Experimental study of additive-manufacturing-enabled innovative diesel combustion bowl features for achieving ultra-low emissions and high efficiency. SAE International Journal of Advances and Current Practices in Mobility, 3, 672–684. https://doi.org/10.4271/2020-37-0003

  67. Grabe, T., Budde, J., Kranert, F., Wienke, A., Neumann, J., Kracht, D., & Lachmayer, R. (2020). Kühlkörper-Designansatz für einen in AlSi10Mg eingebetteten YAG-Laserkristall. In R. Lachmayer, K. Rettschlag, & S. Kaierle (Eds.), Konstruktion für die Additive Fertigung 2019 (pp. 159–175). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-61149-4_11

  68. Binder, M., Anstaett, C., Herzer, F., Horn, M., Schlick, G., Schilp, J., & Reinhart, G. (2018). Potentials and challenges of multi-material processing by laser-based powder bed fusion. In Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, Austin, Texas, USA, August 13–15, 2018.

    Google Scholar 

  69. Fu, W., Haberland, C., Klapdor, E. V., Rule, D., & Piegert, S. (2018). Streamlined frameworks for advancing metal based additive manufacturing technologies. Journal of the Global Power and Propulsion Society, 2, QJLS4L. https://doi.org/10.22261/JGPPS.QJLS4L

  70. Walachowicz, F., Bernsdorf, I., Papenfuss, U., Zeller, C., Graichen, A., Navrotsky, V., Rajvanshi, N., & Kiener, C. (2017). Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing. Journal of Industrial Ecology, 21, S203–S215. https://doi.org/10.1111/jiec.12637

    Article  Google Scholar 

  71. Zhang, Y.-F., Zhang, N., Hingorani, H., Ding, N., Wang, D., Yuan, C., Zhang, B., Gu, G., & Ge, Q. (2019). Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Advanced Functional Materials, 29, 1806698. https://doi.org/10.1002/adfm.201806698

    Article  Google Scholar 

  72. Ehlers, T., Tatzko, S., Wallaschek, J., & Lachmayer, R. (2021). Design of particle dampers for additive manufacturing. Additive Manufacturing, 38, 101752. https://doi.org/10.1016/j.addma.2020.101752

    Article  Google Scholar 

  73. Ehlers, T., & Lachmayer, R. (2022). Design of particle dampers for laser powder bed fusion. Applied Sciences, 12, 2237. https://doi.org/10.3390/app12042237

    Article  Google Scholar 

  74. Ehlers, T., & Lachmayer, R. (2020). Einsatz additiv gefertigter Partikeldämpfer – eine Übersicht. In R. Lachmayer, K. Rettschlag, & S. Kaierle (Eds.), Konstruktion für die Additive Fertigung 2019 (pp. 123–142). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-61149-4_9

  75. Da Silva de Siqueira, R., Mozgova, I., & Lachmayer, R. (2019). An interfacial zone evolutionary optimization method with manufacturing constraints for hybrid components. Journal of Computational Design and Engineering, 6, 387–397. https://doi.org/10.1016/j.jcde.2018.10.003

  76. Bendsøe, M. P., & Sigmund, O. (2004). Topology optimization: Theory, methods, and applications. Springer Berlin Heidelberg. ISBN 978-3-642-07698-5.

    Google Scholar 

  77. Barron, R. F., & Barron, B. R. Design for thermal stresses. Wiley. ISBN 9780470627693.

    Google Scholar 

  78. Rodrigues, H., & Fernandes, P. (1995). A material based model for topology optimization of thermoelastic structures. International Journal for Numerical Methods in Engineering, 38, 1951–1965. https://doi.org/10.1002/nme.1620381202

    Article  MATH  Google Scholar 

  79. Deaton, J. D., & Grandhi, R. V. (2013). Topology optimization of thermal structures with stress constraints. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston, Massachusetts; American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2013-1466

  80. Haney, M. A. (2006). Topology optimization of engine exhaust-washed structures. Wright State University.

    Google Scholar 

  81. Caivano, R., Tridello, A., Codegone, M., & Chiandussi, G. (2021). A new methodology for thermostructural topology optimization: Analytical definition and validation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235, 481–500. https://doi.org/10.1177/1464420720970246

    Article  Google Scholar 

  82. Song, L., Gao, T., Tang, L., Du, X., Zhu, J., Lin, Y., Shi, G., Liu, H., Zhou, G., & Zhang, W. (2021). An all-movable rudder designed by thermo-elastic topology optimization and manufactured by additive manufacturing. Computers & Structures, 243, 106405. https://doi.org/10.1016/j.compstruc.2020.106405

    Article  Google Scholar 

  83. Thivillon, L., Bertrand, P., Laget, B., & Smurov, I. (2009). Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components. Journal of Nuclear Materials, 385, 236–241. https://doi.org/10.1016/j.jnucmat.2008.11.023

    Article  Google Scholar 

  84. Vaezi, M., Chianrabutra, S., Mellor, B., & Yang, S. (2013). Multiple material additive manufacturing – Part 1: A review. Virtual and Physical Prototyping, 8, 19–50. https://doi.org/10.1080/17452759.2013.778175

    Article  Google Scholar 

  85. Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering: R: Reports, 129, 1–16. https://doi.org/10.1016/j.mser.2018.04.001

    Article  Google Scholar 

  86. Anstaett, C., Seidel, C., & Reinhart, G. (2017). Fabrication of 3D-multi-material parts by laser beam based powder bed fusion. In International Solid Freeform Fabrication Symposium (pp. 1548–1556).

    Google Scholar 

  87. Wei, C., Zhang, Z., Cheng, D., Sun, Z., Zhu, M., & Li, L. (2021). An overview of laser-based multiple metallic material additive manufacturing: From macro- to micro-scales. International Journal of Extreme Manufacturing, 3, 12003. https://doi.org/10.1088/2631-7990/abce04

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Ehlers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ehlers, T., Meyer, I., Oel, M., Bode, B., Gembarski, P.C., Lachmayer, R. (2023). Effect-Engineering by Additive Manufacturing. In: Lachmayer, R., Bode, B., Kaierle, S. (eds) Innovative Product Development by Additive Manufacturing 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-05918-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05918-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05917-9

  • Online ISBN: 978-3-031-05918-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics