Skip to main content
Log in

Flurbiprofen Derivatives as Potential DPPH and ABTS Radical Scavengers

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Flurbiprofen derivatives 118 were screened for their free radical scavenging activities. Initially, flurbiprofen hydrazide 1 was synthesized and subjected to various chemical transformations to obtain a range of flurbiprofen hydrazide analogs 29 and flurbiprofen–oxadiazole analogs 1018. All compounds 118 showed good DPPH (IC50 = 0.60±0.16 to 1.77±0.04 µM) and ABTS (IC50 = 0.40±0.10 to 1.46±0.06 µM) radical scavenging activities as compared to the standard ascorbic acid (IC50 = 0.51±0.18 µM for both DPPH and ABTS). Among the synthesized derivatives, compound 13 (DPPH, IC50 = 0.40±0.10 µM; ABTS, IC50 = 0.60±0.16 µM) was found to be the most active. The remaining compounds displayed good to moderate radical scavenging activities. These active compounds can serve as lead molecules to identify more powerful antioxidant agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Fig. 2.
Fig. 3.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Notes

  1. Hereinafter, the first value refers to ABTS, and the second, to DPPH scavenging activity.

REFERENCES

  1. Appiotti, A., Gualdi, L., Alberti, M., and Gualdi, M., Clin. Ther., 1998, vol. 20, p. 913. https://doi.org/10.1016/S0149-2918(98)80073-8

    Article  CAS  PubMed  Google Scholar 

  2. van Hoogevest, P., Tiemessen, H., Metselaar, J.M., Drescher, S., and Fahr, A., Eur. J. Lipid Sci. Technol., 2021, vol. 123, article ID 2000297. https://doi.org/10.1002/ejlt.202000297

  3. Jones, D.S., Irwin, C.R., Woolfson, A.D., Djokic, J., and Adams, V., J. Pharm. Sci., 1999, vol. 88, p. 592. https://doi.org/10.1021/js9803095

    Article  CAS  PubMed  Google Scholar 

  4. Simmons, D.L., Botting, R.M., and Hla, T., Pharmacol. Rev., 2004, vol. 56, p. 387. https://doi.org/10.1124/pr.56.3.3

    Article  CAS  PubMed  Google Scholar 

  5. Guan, P.P., Liang, Y.Y., Cao, L.L., Yu, X., and Wang, P., Neurotherapeutics, 2019, vol. 16, p. 1255. https://doi.org/10.1007/s13311-019-00770-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Süleyman, H., Demircan, B., and Karagöz, Y., Pharmacol. Rep., 2007, vol. 59, p. 247. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=041322159b13da3357210279dab6360af31dad33

    PubMed  Google Scholar 

  7. Li, P., Li, H., Shu, X., Wu, M., Liu, J., Hao, T., Cui, H., and Zheng, L., Drug Delivery, 2020, vol. 27, p. 1034. https://doi.org/10.1080/10717544.2020.1787555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Richy, F., Rabenda, V., Mawet, A., and Reginster, J.Y., Int. J. Clin. Pract., 2007, vol. 61, p. 1396. https://doi.org/10.1111/j.1742-1241.2007.01452.x

    Article  CAS  PubMed  Google Scholar 

  9. Dionne, R.A., Haynes, D., Brahim, J.S., Rowan, J.S., and Guivarc’h, P.-H., J. Clin. Pharmacol., 2004, vol. 44, p. 1418. https://doi.org/10.1177/0091270004265703

    Article  CAS  PubMed  Google Scholar 

  10. Brogden, R.N., Heel, R.C., Speight, T.M., and Avery, G.S., Drugs, 1979, vol. 18, p. 417. https://doi.org/10.2165/00003495-197918060-00001

    Article  CAS  PubMed  Google Scholar 

  11. de Looze, F., Shephard, A., and Smith, A.B., J. Pain Res., 2019, vol. 12, p. 3477. https://doi.org/10.2147/JPR.S221706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan, M., Alam, A., Khan, K.M., Salar, U., Chiguru­pati, S., Wadood, A., Ali, F., Mohammad, J.I., Riaz, M., and Perveen, S., Bioorg. Chem., 2018, vol. 81, p. 157. https://doi.org/10.1016/j.bioorg.2018.07.038

    Article  CAS  PubMed  Google Scholar 

  13. Rosenblum, A., Marsch, L.A., Joseph, H., and Portenoy, R.K., Exp. Clin. Psychopharmacol., 2008, vol. 16, p. 405. https://doi.org/10.1037/a0013628

    Article  PubMed  PubMed Central  Google Scholar 

  14. Neha, K., Haider, M.R., Pathak, A., and Yar, M.S., Eur. J. Med. Chem., 2019, vol. 178, p. 687. https://doi.org/10.1016/j.ejmech.2019.06.010

    Article  CAS  PubMed  Google Scholar 

  15. Engwa, G.A., Phytochemicals: Source of Antioxidants and Role in Disease Prevention, Asao, T. and Asaduzza­man, M., Eds., IntechOpen, 2018. https://doi.org/10.5772/intechopen.76719

  16. Suleman, M., Khan, A., Baqi, A., Kakar, M.S., and Ayub, M., Pure Appl. Biol., 2019, vol. 8, p. 380. https://doi.org/10.19045/bspab.2018.700197

    Article  CAS  Google Scholar 

  17. Al-Amiery, A.A., Res. Chem. Intermed., 2012, vol. 38, p. 745. https://doi.org/10.1007/s11164-011-0414-8

    Article  CAS  Google Scholar 

  18. Al-Amiery, A.A., Kadhum, A.A.H., and Mohamad, A.B., Bioinorg. Chem., 2012, vol. 2012, article ID 795812. https://doi.org/10.1155/2012/795812

  19. Iqbal, S., Kiran, S., Perveen, S., Malik, R., Taha, M., Khan, K.M., Perveen, S., and Choudhary, M.I., Med Chem., 2022, vol. 18, p. 667. https://doi.org/10.2174/1573406418666211220123403

    Article  CAS  PubMed  Google Scholar 

  20. Kanwal, Khan, K.M., Chigurupati, S., Ali, F., Younus, M., Aldubayan, M., Wadood, A., Khan, H., Taha, M., and Perveen, S., ACS Omega, 2021, vol. 6, p. 2264. https://doi.org/10.1021/acsomega.0c05581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salar, U., Khan, K.M., Chigurupati, S., Taha, M., Wadood, A., Vijayabalan, S., Ghufran, M., and Perveen, S., Sci. Rep., 2017, vol. 7, p. 1. https://doi.org/10.1038/s41598-017-17261-w

    Article  CAS  Google Scholar 

  22. Taha, M., Alkadi, K.A., Ismail, N.H., Imran, S., Adam, A., Kashif, S.M., Shah, S.A.A., Jamil, W., Sidiqqui, S., and Khan, K.M., Arab. J. Chem., 2019, vol. 12, p. 3118. https://doi.org/10.1016/j.jksus.2021.101401

    Article  CAS  Google Scholar 

  23. Perveen, S., Saad, S.M., Khan, K.M., and Choud­hary, M.I., Lett. Drug Des. Discovery, 2021, vol. 18, p. 806. https://doi.org/10.2174/1570180818666210427092319

    Article  CAS  Google Scholar 

  24. Liu, H., Qiang, X., Song, Q., Li, W., He, Y., Ye, C., Tan, Z., and Deng, Y., Bioorg. Med. Chem., 2019, vol. 27, p. 991. https://doi.org/10.1016/j.bmc.2019.01.040

    Article  CAS  PubMed  Google Scholar 

  25. Tian, C., Qiang, X., Song, Q., Cao, Z., Ye, C., He, Y., Deng, Y., and Zhang, L., Bioorg. Chem., 2020, vol. 94, article ID 103477. https://doi.org/10.1016/j.bioorg.2019.103477

  26. Halim, M. and Halim, A., Diabetes Metab. Syndr., 2019, vol. 13, p. 1165. https://doi.org/10.1016/j.dsx.2019.01.040

    Article  PubMed  Google Scholar 

  27. Chigurupati, S., Selvaraj, M., Mani, V., Selvarajan, K.K., Mohammad, J.I., Kaveti, B., Bera, H., Palani­muthu, V.R., Teh, L.K., and Salleh, M.Z., Bioorg. Chem., 2016, vol. 67, p. 9. https://doi.org/10.1016/j.bioorg.2016.05.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of the Sindh Higher Education Commission (SHEC, Pakistan, letter no. NO.DD/SHEC/1-14/2014, project code SHEC/SRSP/Med-3/15/2021-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. M. Khan.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Alam, A., Salar, U. et al. Flurbiprofen Derivatives as Potential DPPH and ABTS Radical Scavengers. Russ J Org Chem 59, 1577–1582 (2023). https://doi.org/10.1134/S1070428023090154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023090154

Keywords:

Navigation