Skip to main content
Log in

Ecological-Trophic Structure and Taxonomic Characteristics of the Communities of Soil Microorganisms in the Northern Part of the Novaya Zemlya Archipelago

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Using the method of inoculation of elective nutrient media, the abundance and taxonomic diversity of ecological and trophic groups of microorganisms in soils of the northern part of the Novaya Zemlya Archipelago were evaluated. The content of aerobic and anaerobic nitrogen fixers, as well as denitrifiers, was low (tens and hundreds of CFU/g soil). The number of saprotrophic bacteria varied from 3.3 × 104 to 1.2 × 106 CFU/g soil; actinomycetes, from 1.3 × 103 to 4.0 × 105 CFU/g soil; and micromycetes, from 2.5 × 102 to 1.5 × 104 CFU/g soil. The abundances of all studied groups of microorganisms (except for aerobic nitrogen fixers) in the studied soils sharply decreased down the profile, and this correlated positively with the contents of organic carbon and total nitrogen. The community of soil microorganisms was dominated by gram-positive bacteria of the genera Arthrobacter and Bacillus; actinomycetes of the genera Streptomyces and Micromonospora; and micromycetes of the genera Goffeauzyma, Phoma, Pseudogymnoascus, and Thelebolus. In general, the abundance and taxonomic diversity of cultured microorganisms in the soils of the northern part of Novaya Zemlya were lower than in the soils of the more northern territories of the Franz Josef Land Archipelago. This phenomenon is associated with the drying and cooling effect of the largest glacier in Russia on the Novaya Zemlya Archipelago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Yu. Bol’shiyanov, V. M. Anokhin, and E. A. Guseva, “New data on the structure of the relief and Quaternary deposits of the Novaya Zemlya Archipelago,” in Geological and Geophysical Characteristics of the Lithosphere of the Arctic Region, Tr. Vseross. Nauchno-Issled. Inst. Okeangeol. no. 210 (6) (All-Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean, St. Petersburg, 2006), pp. 149–161.

  2. E. N. Bukvareva and G. M. Aleshchenko, Principle of Optimal Diversity of Biological Systems (KMK, Moscow, 2013) [in Russian].

    Google Scholar 

  3. D. Yu. Vlasov, I. Yu. Kirtsideli, E. V. Abakumov, Yu. K. Novozhilov, M. S. Zelenskaya, and E. P. Barantsevich, “Anthropogenic invasion of micromycetes to undisturbed ecosystems of the Larsemann Hills Oasis (East Antarctica),” Russ. J. Biol. Invasions 11, 208–215 (2020).

    Article  Google Scholar 

  4. G. F. Gauze, T. P. Preobrazhenskaya, M. A. Sveshnikova, L. P. Terekhova, and T. S. Maksimova, Guide for Identification of Actinomycetes (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  5. A. M. Glushakova, A. V. Kachalkin, and I. Yu. Chernov, “Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil,” Eurasian Soil Sci. 44, 886–892 (2011). )https://doi.org/10.1134/S1064229311080059

    Article  Google Scholar 

  6. S. V. Goryachkin, Soil Cover of the North: Patterns, Genesis, Ecology, and Evolution (GEOS, Moscow, 2010) [in Russian].

  7. S. V. Goryachkin, N. A. Karavaeva, and V. O. Targulian, “Geography of Arctic soils: current problems,” Eurasian Soil Sci. 31, 467–476 (1998).

    Google Scholar 

  8. T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48, 959–967 (2015). https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  9. N. S. Egorov, Practicum on Microbiology (Moscow State Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  10. D. G. Zvyagintsev, Methods of Soil Microbiology and Biochemistry (Moscow State Univ., Moscow, 1991), p. 60.

    Google Scholar 

  11. D. G. Zvyagintsev, G. M. Zenova, T. A. Gracheva, A. I. Kurapova, and M. S. Dubrova, “Diversity of soil actinomycete complexes related with temperature adaptations of mycelial actinobacteria,” Teor. Prikl. Ekol., No. 1, 4–23 (2011).

  12. G. M. Zenova Soil Actinomycetes of Rare Genera: Methodological Guide (Moscow State Univ., Moscow, 2000) [in Russian].

    Google Scholar 

  13. G. M. Zenova, M. S. Dubrova, and D. G. Zvyagintsev, “Structural-functional specificity of the complexes of psychrotolerant soil actinomycetes,” Eurasian Soil Sci. 43, 447–452 (2010). )https://doi.org/10.1134/S1064229310040113

    Article  Google Scholar 

  14. T. K. Il’ina and O. M. Fomina, USSR Inventor’s Certificate No. 113328a (30 June 1983).

  15. I. Yu. Kirtsideli, “Microfungi from soils of the Heiss Island (Franz Joseph Land),” Nov. Sist. Nizshikh Rast., No. 49, 151–160 (2015).

  16. I. Yu. Kirtsideli, D. Yu. Vlasov, M. S. Zelenskaya, V. A. Il’yushin, Yu. K. Novozhilov, I. V. Churkina, and E. P. Barantsevich, “Assessment of anthropogenic invasion of microscopic fungi in arctic ecosystems (Svalbard Archipelago),” Gig. Sanit., No. 99 (2), 145–151 (2020). https://doi.org/10.33029/0016-9900-2020-99-2-145-151

  17. M. V. Korneikova, V. V. Red’kina, V. A. Myazin, N. V. Fokina, and R. R. Shalygina, “Microorganisms of soils of the Rybachy Peninsula,” Tr. Kol’sk. Nauchn. Tsentra, Ross. Akad. Nauk, No. 10 (47), 108–122 (2019). https://doi.org/10.25702/KSC.2307-5252.2019.4.108-122

    Article  Google Scholar 

  18. V. V. Krupskaya, A. Yu. Miroshnikov, O. V. Dorzhieva, S. V. Zakusin, I. N. Semenkov, and A. A. Usacheva, “Mineral composition of soils and bottom sediments in bays of Novaya Zemlya,” Oceanology 57, 215–221 (2017). https://doi.org/10.1134/S0001437017010076

    Article  Google Scholar 

  19. O. V. Kutovaya, “Transformation of the structure of the microbial community of soddy-podzolic soil under the influence of earthworms,” Agrokhim. Vestn., No. 2, 13–14 (2008).

  20. O. V. Kutovaya, A. M. Grebennikov, A. K. Tkhakakhova, V. A. Isaev, V. M. Garmashov, V. A. Bespalov, Yu. I. Cheverdin, and V. P. Belobrov, “The changes in soil-biological processes and structure of microbial community of agrochernozems in conditions of different ways of soil cultivation,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 92, 35–61 (2018). https://doi.org/10.19047/0136-1694-2018-92-35-61

    Article  Google Scholar 

  21. L. V. Lysak, I. A. Maksimova, D. A. Nikitin, A. E. Ivanova, A. G. Kudinova, V. S. Soina, and O. E. Marfenina, “Soil microbial communities of Eastern Antarctica,” Moscow Univ. Biol. Sci. Bull. 73, 104–112 (2018). https://doi.org/10.3103/S0096392518030124

    Article  Google Scholar 

  22. L. V. Lysak, I. N. Skvortsova, and T. G. Dobrovol’skaya, Methods for Assessment of Bacterial Diversity of Soils and Identification of Soil Bacteria (MAKS Press, Moscow, 2003) [in Russian].

    Google Scholar 

  23. O. E. Marfenina, D. A. Nikitin, and A. E. Ivanova, “The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (Progress and Russkaya stations),” Eurasian Soil Sci. 49, 934–941 (2016). https://doi.org/10.1134/S106422931608007X

    Article  Google Scholar 

  24. D. S. Moiseev and L. A. Sergienko, “Flora of the islands of the Franz Josef Land Archipelago and the northern part of the Novaya Zemlya Archipelago (an annotated list of species),” Uch. Zap. Petrozavodsk. Gos. Univ., No. 4, 165 (2017).

  25. D. A. Nikitin, O. E. Marfenina, and I. A. Maksimova, “The use of the succession approach in studying the species composition of microscopic fungi and the content of fungal biomass in Antarctic soils,” Mikol. Fitopatol. 51 (4), 211–219 (2017).

    Google Scholar 

  26. D. A. Nikitin, E. A. Ivanova, A. D. Zhelezova, M. V. Semenov, R. G. Gadzhiumarov, A. K. Tkhakakhova, T. I. Chernov, N. A. Ksenofontova, and O. V. Kutovaya, “Assessment of the impact of no-till and conventional tillage technologies on the microbiome of southern agrochernozems,” Eurasian Soil Sci. 53, 1782–1793 (2020). https://doi.org/10.1134/S106422932012008X

    Article  Google Scholar 

  27. D. A. Nikitin, L. V. Lysak, D. V. Badmadashiev, S. S. Kholod, N. S. Mergelov, A. V. Dolgikh, and S. V. Goryachkin, “Biological activity of soils in the north of the Novaya Zemlya Archipelago: effect of the largest glacial sheet in Russia,” Eurasian Soil Sci. 54 (10), 1207–1230 (2021).

    Article  Google Scholar 

  28. D. A. Nikitin, M. V. Semenov, A. A. Semikolennykh, I. A. Maksimova, A. V. Kachalkin, and A. E. Ivanova, “Fungal biomass and species diversity of the cultivated mycobiota of soils and substrates of the Northbrook Island (Franz Josef Land),” Mikol. Fitopatol. 53 (4), 210–222 (2019). https://doi.org/10.1134/S002636481904010X

    Article  Google Scholar 

  29. V. V. Prokopenko, G. M. Zenova, and N. A. Manucharova, “Ecophysiological characteristics of psychrotolerant actinomycetes in tundra and forest landscapes,” Eurasian Soil Sci. 52, 682–689 (2019). https://doi.org/10.1134/S1064229319040100

    Article  Google Scholar 

  30. I. Semenkov, Physico-geographical characteristics of the Novaya Zemlya Archipelago: a review of literature, 2020. https://doi.org/10.13140/RG.2.2.15583.20642

  31. A. A. Usacheva, I. N. Semenkov, A. Yu. Miroshnikov, V. V. Krupskaya, and S. V. Zakusin, “Geochemical features of Arctic tundra landscapes of the eastern coast of Novaya Zemlya Archipelago,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 6, 87–95 (2016).

  32. S. S. Kholod, “Vegetation in the vicinity of Cape Zhelaniya (Severny Island of the Novaya Zemlya Archipelago),” Rastit. Ross., No. 38, 85–138 (2020). https://doi.org/10.31111/vegrus/2020.38.85

  33. J. G. Holt, N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S.T. Williams, Bergey’s Manual of Determinative Bacteriology (Williams & Wilkins, Baltimore, 1994; Mir, Moscow, 1997).

  34. E. M. Bach, R. J. Williams, S. K. Hargreaves, F. Yang, and K. S. Hofmockel, “Greatest soil microbial diversity found in micro-habitats,” Soil Biol. Biochem. 118, 217–226 (2018). https://doi.org/10.1016/j.soilbio.2017.12.018

    Article  Google Scholar 

  35. A. A. Belov, V. S. Cheptsov, E. A. Vorobyova, N. A. Manucharova, and Z. S. Ezhelev, “Culturable bacterial communities isolated from cryo-arid soils: phylogenetic and physiological characteristics,” Pleontol. J. 54 (8), 903–912 (2020). https://doi.org/10.1134/S0031030120080043

    Article  Google Scholar 

  36. G. S. de Hoog, J. Guarro, J. Gené, and M. J. Figueras, The Atlas of Clinical Fungi, 2 ed. (Centraalbureau voor Schimmelcultures, Utrecht, 2000).

    Google Scholar 

  37. K. H. Domsch, W. Gams, and T.-H. Anderson, Compendium of Soil Fungi (IHW-Verlag, Eching, 2007).

  38. M. B. Ellis, Dematiaceous Hyphomycetes (Commonwealth Mycological Institute, Kew, 1971).

    Google Scholar 

  39. N. Fanin, P. Kardol, M. Farrell, M.-C. Nilsson, M. J. Gundale, and D. A. Wardle, “The ratio of gram-positive to gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils,” Soil Biol. Biochem. 128, 111–114 (2019). https://doi.org/10.1016/j.soilbio.2018.10.010

    Article  Google Scholar 

  40. S. Flimban, S.-E. Oh, J. H. Joo, and K. A. Hussein, “Characterization and identification of cellulose-degrading bacteria isolated from a microbial fuel cell reactor,” Biotechnol. Bioprocess Eng. 24 (4), 622–631 (2019). https://doi.org/10.1007/s12257-019-0089-3

    Article  Google Scholar 

  41. V. Gesheva and T. Negoita, “Psychrotrophic microorganism communities in soils of Haswell Island, Antarctica, and their biosynthetic potential,” Polar Biol. 35 (2), 291–297 (2012). https://doi.org/10.1007/s00300-011-1052-8

    Article  Google Scholar 

  42. D. A. Hutchins, J. K. Jansson, J. V. Remais, V. I. Rich, B. K. Singh, and P. Trivedi, “Climate change microbiology–problems and perspectives,” Nat. Rev. Microbiol. 17 (6), 391–396 (2019). https://doi.org/10.1038/s41579-019-0178-5

    Article  Google Scholar 

  43. G. A. Kochkina, N. E. Ivanushkina, A. V. Lupachev, I. P. Starodumova, O. V. Vasilenko, and S. M. Ozerskaya, “Diversity of mycelial fungi in natural and human-affected Antarctic soils,” Polar Biol. 42 (1), 47–64 (2019). https://doi.org/10.1007/s00300-018-2398-y

    Article  Google Scholar 

  44. A. G. Kudinova, M. A. Petrova, A. V. Dolgikh, V. S. Soina, L. V. Lysak, and O. A. Maslova, “Taxonomic diversity of bacteria and their filterable forms in the soils of Eastern Antarctica (Larsemann Hills and Bunger Hills),” Microbiology (Moscow) 89, 574–584 (2020). https://doi.org/10.1134/S0026261720050136

    Article  Google Scholar 

  45. S. Kumar, D. C. Suyal, A. Yadav, Y. Shouche, and R. Goel, “Microbial diversity and soil physiochemical characteristic of higher altitude,” PLoS One 14 (3), e0213844 (2019). https://doi.org/10.1371/journal.pone.0213844

    Article  Google Scholar 

  46. L. A. Malard and D. A. Pearce, “Microbial diversity and biogeography in Arctic soils,” Environ. Microbiol. Rep. 10 (6), 611–625 (2018). https://doi.org/10.1111/1758-2229.12680

    Article  Google Scholar 

  47. B. Malcheva, M. Nustorova, M. Zhiyanski, M. Sokolovska, R. Yaneva, and E. Abakumov, “Diversity and activity of microorganisms in Antarctic polar soils,” One Ecosyst. 5, e51816 (2020). https://doi.org/10.3897/oneeco.5.e51816

    Article  Google Scholar 

  48. Y. A. Mazei, A. N. Tsyganov, V. A. Chernyshov, A. A. Ivanovsky, and R. J. Payne, “First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic),” Polar Biol. 41 (6), 1133–1142 (2018). https://doi.org/10.1007/s00300-018-2273-x

    Article  Google Scholar 

  49. R. G. L. McCready, W. D. Gould, and R. W. Barendregt, “Nitrogen isotope fractionation during the reduction of NO3 to NH4 + by Desulfovibrio sp.,” Can. J. Microbiol. 29 (2), 231–234. 1983.

    Article  Google Scholar 

  50. K. Möller, “Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity,” Agron. Sustainable Dev. 35 (3), 1021–1041 (2015). https://doi.org/10.1007/s13593-015-0284-3

    Article  Google Scholar 

  51. M. V. Nash, A. M. Anesio, G. Barker, M. Tranter, G. Varliero, E. A. Eloe-Fadrosh, T. Nielsen, T. Turpin-Jelfs, L. G. Benning, and P. Sánchez-Baracaldo, “Metagenomic insights into diazotrophic communities across Arctic glacier forefields,” FEMS Microbiol. Ecol. 94 (9), fiy114 (2018). https://doi.org/10.1093/femsec/fiy114

    Article  Google Scholar 

  52. R. Norum and J. Proctor, Svalbard: Spitsbergen, Jan Mayen, Franz Josef Land (Bradt Travel Guides, Chesham, 2018.

    Google Scholar 

  53. K. Rousk, P. L. Sorensen, and A. Michelsen, “Nitrogen fixation in the High Arctic: a source of ‘new’ nitrogen?” Biogeochemistry 136 (2), 213–222 (2017). https://doi.org/10.1007/s10533-017-0393-y

    Article  Google Scholar 

  54. M. M. Salcher, “Isolation and cultivation of planktonic freshwater microbes is essential for a comprehensive understanding of their ecology,” Aquat. Microb. Ecol. 77 (3), 183–196 (2016). https://doi.org/10.3354/ame01796

    Article  Google Scholar 

  55. K. A. Seifert and W. Gams, “The genera of Hyphomycetes–2011 update,” Persoonia 27, 119 (2011). https://doi.org/10.3767/003158511X617435

    Article  Google Scholar 

  56. L. Selbmann, L. Zucconi, S. Ruisi, M. Grube, M. Cardinale, and S. Onofri, “Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance,” Polar Biol. 33 (1), 71–83 (2010). https://doi.org/10.1007/s00300-009-0686-2

    Article  Google Scholar 

  57. P. Singh, S. M. Singh, R. N. Singh, S. Naik, U. Roy, A. Srivastava, and M. Bölter, “Bacterial communities in ancient permafrost profiles of Svalbard, Arctic,” J. Basic Microbiol. 57 (12), 1018–1036 (2017). https://doi.org/10.1002/jobm.201700061

    Article  Google Scholar 

  58. D. A. Walker, M. K. Raynolds, F. J. A. Daniels, E. Einarsson, A. Elvebakk, W. A. Gould, A. E. Katenin, S. S. Kholod, C. J. Markon, E. S. Melnikov, N. G. Moskalenko, S. S. Talbot, B. A. Yurtsev, et al., “The Circumpolar Arctic vegetation map,” J. Veg. Sci. 16, 267–282 (2005). https://doi.org/10.1111/j.1654-1103.2005.tb02365.x

    Article  Google Scholar 

  59. J. Wang, D. R. Chadwick, Y. Cheng, and X. Yan, “Global analysis of agricultural soil denitrification in response to fertilizer nitrogen,” Sci. Total Environ. 616, 908–917 (2018). https://doi.org/10.1016/j.scitotenv.2017.10.229

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Arctic Floating University project of the Northern (Arctic) Federal University named after M.V. Lomonosov and personally to K.S. Zaikov for organization of field work in Novaya Zemlya. We are also grateful to the stuff of the Department of the Geography and Evolution of Soils of the Institute of Geography, Russian Academy of Sciences and personally to S.V. Goryachkin for the help in determination the taxonomic positions of studied soils.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-04-00328 (microbiological analyses) and project no. 18-05-60279 (fieldwork and soil sampling).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikitin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A., Lysak, L.V., Kutovaya, O.V. et al. Ecological-Trophic Structure and Taxonomic Characteristics of the Communities of Soil Microorganisms in the Northern Part of the Novaya Zemlya Archipelago. Eurasian Soil Sc. 54, 1689–1704 (2021). https://doi.org/10.1134/S1064229321110107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321110107

Keywords:

Navigation